{"title":"STEAP3 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication by Regulating Fatty Acid and Lipid Droplet Synthesis.","authors":"Chenyang Yuan, Kaifeng Guan, Gaiping Zhang","doi":"10.3390/vetsci12020147","DOIUrl":null,"url":null,"abstract":"<p><p>Porcine Reproductive and Respiratory Syndrome (PRRS) is a contagious disease that impacts swine health worldwide. Lipid metabolism plays a vital role in energy production and is regulated by various genes involved in lipogenesis and lipolysis. In this study, we found that PRRSV infection significantly reduced the protein expression of STEAP3. The overexpression of STEAP3 can notably inhibit PRRSV replication. Additionally, we utilized transcriptomics and metabolomics to examine the effects of STEAP3 on PRRSV replication, identifying important pathways associated with energy metabolism and lipogenesis. We subsequently found that STEAP3 can suppress PRRSV replication by regulating fatty acid synthesis and enhancing lipid droplet formation. Overall, these findings indicate that STEAP3 could be a potential target for developing strategies to manage PRRSV infection by modulating lipid metabolism.</p>","PeriodicalId":23694,"journal":{"name":"Veterinary Sciences","volume":"12 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861627/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/vetsci12020147","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is a contagious disease that impacts swine health worldwide. Lipid metabolism plays a vital role in energy production and is regulated by various genes involved in lipogenesis and lipolysis. In this study, we found that PRRSV infection significantly reduced the protein expression of STEAP3. The overexpression of STEAP3 can notably inhibit PRRSV replication. Additionally, we utilized transcriptomics and metabolomics to examine the effects of STEAP3 on PRRSV replication, identifying important pathways associated with energy metabolism and lipogenesis. We subsequently found that STEAP3 can suppress PRRSV replication by regulating fatty acid synthesis and enhancing lipid droplet formation. Overall, these findings indicate that STEAP3 could be a potential target for developing strategies to manage PRRSV infection by modulating lipid metabolism.
期刊介绍:
Veterinary Sciences is an international and interdisciplinary scholarly open access journal. It publishes original that are relevant to any field of veterinary sciences, including prevention, diagnosis and treatment of disease, disorder and injury in animals. This journal covers almost all topics related to animal health and veterinary medicine. Research fields of interest include but are not limited to: anaesthesiology anatomy bacteriology biochemistry cardiology dentistry dermatology embryology endocrinology epidemiology genetics histology immunology microbiology molecular biology mycology neurobiology oncology ophthalmology parasitology pathology pharmacology physiology radiology surgery theriogenology toxicology virology.