{"title":"Feline Calicivirus Infection Manipulates Central Carbon Metabolism.","authors":"Guangrong Zhao, Hongwei Zhu, Xiu Xue, Chenpei Zhao, Xin Yu, Linlin Jiang, Jingxian Cong, Yang Liu, Yuanlong He, Jianlong Zhang, Xingxiao Zhang","doi":"10.3390/vetsci12020138","DOIUrl":null,"url":null,"abstract":"<p><p>Viruses can manipulate the host metabolism to achieve optimal replication conditions, and central carbon metabolism (CCM) pathways are often crucial in determining viral infections. Feline calicivirus (FCV), a diminutive RNA viral agent, induces upper respiratory tract infections in feline hosts, with highly pathogenic strains capable of precipitating systemic infections and subsequent host cell necrosis, thereby presenting a formidable challenge to feline survival and protection. However, the relationship between FCV and host cell central carbon metabolism (CCM) remains unclear, and the precise pathogenic mechanisms of FCV are yet to be elucidated. Upon FCV infection of Crandell-Rees Feline Kidney (CRFK) cells, an enhanced cellular uptake of glucose and glutamine was observed. Metabolomics analyses disclosed pronounced alterations in the central carbon metabolism of the infected cells. FCV infection was found to augment glycolytic activity while sustaining the tricarboxylic acid (TCA) cycle flux, with cellular ATP levels remaining invariant. Concurrently, both glutamine metabolism and the flux of the pentose phosphate pathway (PPP) were noted to be intensified. The application of various inhibitory agents targeting glycolysis, glutamine metabolism, and the PPP resulted in a significant suppression of FCV proliferation. Experiments involving glucose and glutamine deprivation demonstrated that the absence of either nutrient markedly curtailed FCV replication. Collectively, these findings suggest a critical interplay between central carbon metabolism and FCV proliferation. FCV infection stimulates CRFK cells to augment glucose and glutamine uptake, thereby supplying the necessary metabolic substrates and energy for viral replication. During the infection, glutamine emerges as the primary energy substrate, ensuring ATP production and energy homeostasis, while glucose is predominantly channeled into the pentose phosphate pathway to facilitate nucleotide synthesis.</p>","PeriodicalId":23694,"journal":{"name":"Veterinary Sciences","volume":"12 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/vetsci12020138","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Viruses can manipulate the host metabolism to achieve optimal replication conditions, and central carbon metabolism (CCM) pathways are often crucial in determining viral infections. Feline calicivirus (FCV), a diminutive RNA viral agent, induces upper respiratory tract infections in feline hosts, with highly pathogenic strains capable of precipitating systemic infections and subsequent host cell necrosis, thereby presenting a formidable challenge to feline survival and protection. However, the relationship between FCV and host cell central carbon metabolism (CCM) remains unclear, and the precise pathogenic mechanisms of FCV are yet to be elucidated. Upon FCV infection of Crandell-Rees Feline Kidney (CRFK) cells, an enhanced cellular uptake of glucose and glutamine was observed. Metabolomics analyses disclosed pronounced alterations in the central carbon metabolism of the infected cells. FCV infection was found to augment glycolytic activity while sustaining the tricarboxylic acid (TCA) cycle flux, with cellular ATP levels remaining invariant. Concurrently, both glutamine metabolism and the flux of the pentose phosphate pathway (PPP) were noted to be intensified. The application of various inhibitory agents targeting glycolysis, glutamine metabolism, and the PPP resulted in a significant suppression of FCV proliferation. Experiments involving glucose and glutamine deprivation demonstrated that the absence of either nutrient markedly curtailed FCV replication. Collectively, these findings suggest a critical interplay between central carbon metabolism and FCV proliferation. FCV infection stimulates CRFK cells to augment glucose and glutamine uptake, thereby supplying the necessary metabolic substrates and energy for viral replication. During the infection, glutamine emerges as the primary energy substrate, ensuring ATP production and energy homeostasis, while glucose is predominantly channeled into the pentose phosphate pathway to facilitate nucleotide synthesis.
期刊介绍:
Veterinary Sciences is an international and interdisciplinary scholarly open access journal. It publishes original that are relevant to any field of veterinary sciences, including prevention, diagnosis and treatment of disease, disorder and injury in animals. This journal covers almost all topics related to animal health and veterinary medicine. Research fields of interest include but are not limited to: anaesthesiology anatomy bacteriology biochemistry cardiology dentistry dermatology embryology endocrinology epidemiology genetics histology immunology microbiology molecular biology mycology neurobiology oncology ophthalmology parasitology pathology pharmacology physiology radiology surgery theriogenology toxicology virology.