Revisiting variation in the somatic mutation landscape of non-small cell lung cancer.

IF 3.3 Q2 GENETICS & HEREDITY
Vaibhavi Pathak, Koichi Tazaki, Minal Çalışkan
{"title":"Revisiting variation in the somatic mutation landscape of non-small cell lung cancer.","authors":"Vaibhavi Pathak, Koichi Tazaki, Minal Çalışkan","doi":"10.1016/j.xhgg.2025.100420","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) is driven by a diverse array of somatic mutations. The vast majority of literature on NSCLC is based on targeted assays or small sample sizes, limiting the ability to provide a comprehensive view of NSCLC mutation profiles. Here, we analyzed genome-wide screen data (including whole genome sequencing and whole exome sequencing) from 1,874 NSCLC subjects to identify molecular subtypes and putative driver genes and to explore the effect of intrinsic and extrinsic factors on somatic mutation profiles. We showed that genome-wide screen data support existing knowledge, such as the TP53:KRAS mutation co-occurrence pattern as a key distinctive feature, but do not reveal additional broad molecular subtypes. In contrast, we demonstrated that low-frequency molecular subtypes or potential driver genes continue to be identified. Using driver gene identification algorithms, we found 50 potential driver genes including ANG, CDK10, CTDSP2, HOXA5, RBP4, and SPHK2, which show evidence of positive selection in NSCLC. Finally, we provided insights into the intrinsic and extrinsic covariates associated with the NSCLC somatic mutation landscape, while confirming associations with ethnicity (TP53 and EGFR), NSCLC subtype (14 genes including KRAS, NFE2L2, and STK11), and smoking history (KRAS, CSMD3, and TP53), we dismissed gene-level associations with sex when other covariates are controlled for. The results presented here represent a concise up-to-date summary of variation in the somatic mutation landscape and carry importance for NSCLC geneticists, medical practitioners, and drug discovery scientists.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100420"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952789/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-small cell lung cancer (NSCLC) is driven by a diverse array of somatic mutations. The vast majority of literature on NSCLC is based on targeted assays or small sample sizes, limiting the ability to provide a comprehensive view of NSCLC mutation profiles. Here, we analyzed genome-wide screen data (including whole genome sequencing and whole exome sequencing) from 1,874 NSCLC subjects to identify molecular subtypes and putative driver genes and to explore the effect of intrinsic and extrinsic factors on somatic mutation profiles. We showed that genome-wide screen data support existing knowledge, such as the TP53:KRAS mutation co-occurrence pattern as a key distinctive feature, but do not reveal additional broad molecular subtypes. In contrast, we demonstrated that low-frequency molecular subtypes or potential driver genes continue to be identified. Using driver gene identification algorithms, we found 50 potential driver genes including ANG, CDK10, CTDSP2, HOXA5, RBP4, and SPHK2, which show evidence of positive selection in NSCLC. Finally, we provided insights into the intrinsic and extrinsic covariates associated with the NSCLC somatic mutation landscape, while confirming associations with ethnicity (TP53 and EGFR), NSCLC subtype (14 genes including KRAS, NFE2L2, and STK11), and smoking history (KRAS, CSMD3, and TP53), we dismissed gene-level associations with sex when other covariates are controlled for. The results presented here represent a concise up-to-date summary of variation in the somatic mutation landscape and carry importance for NSCLC geneticists, medical practitioners, and drug discovery scientists.

重新审视非小细胞肺癌的体细胞突变景观。
非小细胞肺癌(NSCLC)是由多种体细胞突变驱动的。绝大多数关于NSCLC的文献都是基于靶向检测或小样本量,这限制了它们提供NSCLC突变谱的全面视图的能力。在此,我们分析了来自1874名NSCLC受试者的全基因组筛选数据(包括WGS和WES),以确定分子亚型,推测的驱动基因,并探讨内在和外在因素对体细胞突变谱的影响。我们发现全基因组筛选数据支持现有的知识,如TP53:KRAS突变共发生模式是一个关键的独特特征,但没有揭示其他广泛的分子亚型。相反,我们证明了低频分子亚型或潜在的驱动基因继续被识别。利用驱动基因识别算法,我们发现了50个潜在的驱动基因,包括ANG、CDK10、CTDSP2、HOXA5、RBP4和SPHK2,这些基因在NSCLC中表现出正选择的证据。最后,我们提供了与NSCLC体细胞突变景观相关的内在和外在协变量的见解;虽然证实了与种族(TP53, EGFR),非小细胞肺癌亚型(包括KRAS, NFE2L2, STK11在内的14个基因)和吸烟史(KRAS, CSMD3, TP53)的相关性,但在控制了其他变量后,我们排除了基因水平与性别的相关性。本文的研究结果对体细胞突变领域的变异进行了简明扼要的总结,对非小细胞肺癌遗传学家、医学从业者和药物研发科学家具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信