Klaudia Chrzastek, Bruce S Seal, Arun Kulkarni, Darrell R Kapczynski
{"title":"Whole-Genome Shotgun Sequencing from Chicken Clinical Tracheal Samples for Bacterial and Novel Bacteriophage Identification.","authors":"Klaudia Chrzastek, Bruce S Seal, Arun Kulkarni, Darrell R Kapczynski","doi":"10.3390/vetsci12020162","DOIUrl":null,"url":null,"abstract":"<p><p>A whole-genome shotgun sequencing (sWGS) approach was applied to chicken clinical tracheal swab samples during metagenomics investigations to identify possible microorganisms among poultry with respiratory diseases. After applying shotgun sequencing, <i>Ornithobacterium rhinotracheale</i> (ORT) and a putative prophage candidate were found in one of the swab samples. A multi-locus sequence typing (MLST) scheme of the ORT genome involved the adk, aroE, fumC, gdhA, pgi, and pmi genes. Antibiotic resistant analysis demonstrated tetracycline-resistan t ribosomal protection protein, tetQ, the aminoglycoside-(3)-acetyltransferase IV gene, aminoglycoside antibiotic inactivation and macrolide resistance, and the ermX gene in the ORT genome. A putative prophage candidate was predicted using Prophage Hunter and PHAST, while BLAST analyses were utilized to identify genes encoding bacteriophage proteins. Interestingly, genes encoding endolysins were detected in bacteriophage genomes. The gene products encoded in the prophage sequence were most closely related to bacteriophages in the N4-like family among the Authographiviridae in the Caudovirales. This study demonstrates the potential of sWGS for the rapid detection and characterization of etiologic agents found in clinical samples.</p>","PeriodicalId":23694,"journal":{"name":"Veterinary Sciences","volume":"12 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/vetsci12020162","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A whole-genome shotgun sequencing (sWGS) approach was applied to chicken clinical tracheal swab samples during metagenomics investigations to identify possible microorganisms among poultry with respiratory diseases. After applying shotgun sequencing, Ornithobacterium rhinotracheale (ORT) and a putative prophage candidate were found in one of the swab samples. A multi-locus sequence typing (MLST) scheme of the ORT genome involved the adk, aroE, fumC, gdhA, pgi, and pmi genes. Antibiotic resistant analysis demonstrated tetracycline-resistan t ribosomal protection protein, tetQ, the aminoglycoside-(3)-acetyltransferase IV gene, aminoglycoside antibiotic inactivation and macrolide resistance, and the ermX gene in the ORT genome. A putative prophage candidate was predicted using Prophage Hunter and PHAST, while BLAST analyses were utilized to identify genes encoding bacteriophage proteins. Interestingly, genes encoding endolysins were detected in bacteriophage genomes. The gene products encoded in the prophage sequence were most closely related to bacteriophages in the N4-like family among the Authographiviridae in the Caudovirales. This study demonstrates the potential of sWGS for the rapid detection and characterization of etiologic agents found in clinical samples.
期刊介绍:
Veterinary Sciences is an international and interdisciplinary scholarly open access journal. It publishes original that are relevant to any field of veterinary sciences, including prevention, diagnosis and treatment of disease, disorder and injury in animals. This journal covers almost all topics related to animal health and veterinary medicine. Research fields of interest include but are not limited to: anaesthesiology anatomy bacteriology biochemistry cardiology dentistry dermatology embryology endocrinology epidemiology genetics histology immunology microbiology molecular biology mycology neurobiology oncology ophthalmology parasitology pathology pharmacology physiology radiology surgery theriogenology toxicology virology.