New High-Throughput Method for Aluminum Content Determination in Vaccine Formulations.

IF 5.2 3区 医学 Q1 IMMUNOLOGY
Vaccines Pub Date : 2025-01-22 DOI:10.3390/vaccines13020105
Lorenzo Di Meola, Daniela Pasqui, Chiara Tigli, Stephen Luckham, Silvio Colomba, Marilena Paludi, Maxime Denis, Angelo Palmese, Daniela Stranges, Agnese Marcelli, Alessio Moriconi, Malte Meppen, Carlo Pergola
{"title":"New High-Throughput Method for Aluminum Content Determination in Vaccine Formulations.","authors":"Lorenzo Di Meola, Daniela Pasqui, Chiara Tigli, Stephen Luckham, Silvio Colomba, Marilena Paludi, Maxime Denis, Angelo Palmese, Daniela Stranges, Agnese Marcelli, Alessio Moriconi, Malte Meppen, Carlo Pergola","doi":"10.3390/vaccines13020105","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This manuscript describes an innovative, non-destructive, high-throughput method for the quantification of aluminum hydroxide in aluminum-adjuvanted vaccines, eliminating the need of reagents and providing real-time results. The method is based on a spectrophotometric principle, and several model proteins were studied and tested with the aim to simulate the behavior of aluminum-adjuvanted antigens.</p><p><strong>Methods: </strong>As a proof of concept, the MenB vaccine was used, and the titration of aluminum hydroxide (AH) with ethylenediaminetetraacetic acid (EDTA) was used as an orthogonal reference, as it is one of the current release methods for the content determination of aluminum-hydroxide-adjuvanted vaccine drug products (DPs). The factors influencing the spectrophotometric analysis, such as different plate 96/well containers, variation in the sedimentation of the suspension due to component addition errors during formulation, and batch-to-batch variation were studied to assess the method's robustness. Five concentration levels (ranging from 2.0 to 4.0 mg/mL AH) with two different batches of aluminum hydroxide were each measured with independent preparations performed by three different operators, for a total of four sessions/operator and 20 formulations/session. An in-depth statistical study was carried out with generated data to assess the precision (in terms of intermediate precision and repeatability), accuracy, linearity, and specificity of the method.</p><p><strong>Results: </strong>The novel spectrophotometric method and the official release one (potentiometric) yielded comparable results, demonstrating the potential of this new method as a release test for AH-adjuvanted products. A simple calibration curve enabled the measurement of samples in a 96-well plate in just a few minutes.</p><p><strong>Conclusions: </strong>We developed a novel method for Aluminum concentration determination in Aluminum-containing pharmaceutical products, like alum-adjuvanted vaccines. This method is fast, completely automatable, and as precise and accurate as already-in-place release methods.</p>","PeriodicalId":23634,"journal":{"name":"Vaccines","volume":"13 2","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861868/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/vaccines13020105","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This manuscript describes an innovative, non-destructive, high-throughput method for the quantification of aluminum hydroxide in aluminum-adjuvanted vaccines, eliminating the need of reagents and providing real-time results. The method is based on a spectrophotometric principle, and several model proteins were studied and tested with the aim to simulate the behavior of aluminum-adjuvanted antigens.

Methods: As a proof of concept, the MenB vaccine was used, and the titration of aluminum hydroxide (AH) with ethylenediaminetetraacetic acid (EDTA) was used as an orthogonal reference, as it is one of the current release methods for the content determination of aluminum-hydroxide-adjuvanted vaccine drug products (DPs). The factors influencing the spectrophotometric analysis, such as different plate 96/well containers, variation in the sedimentation of the suspension due to component addition errors during formulation, and batch-to-batch variation were studied to assess the method's robustness. Five concentration levels (ranging from 2.0 to 4.0 mg/mL AH) with two different batches of aluminum hydroxide were each measured with independent preparations performed by three different operators, for a total of four sessions/operator and 20 formulations/session. An in-depth statistical study was carried out with generated data to assess the precision (in terms of intermediate precision and repeatability), accuracy, linearity, and specificity of the method.

Results: The novel spectrophotometric method and the official release one (potentiometric) yielded comparable results, demonstrating the potential of this new method as a release test for AH-adjuvanted products. A simple calibration curve enabled the measurement of samples in a 96-well plate in just a few minutes.

Conclusions: We developed a novel method for Aluminum concentration determination in Aluminum-containing pharmaceutical products, like alum-adjuvanted vaccines. This method is fast, completely automatable, and as precise and accurate as already-in-place release methods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Vaccines
Vaccines Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
8.90
自引率
16.70%
发文量
1853
审稿时长
18.06 days
期刊介绍: Vaccines (ISSN 2076-393X) is an international, peer-reviewed open access journal focused on laboratory and clinical vaccine research, utilization and immunization. Vaccines publishes high quality reviews, regular research papers, communications and case reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信