Nicola J Beresford, Gianluigi De Benedetto, Kay Lockyer, Fang Gao, Karena Burkin, Karan Lalwani, Barbara Bolgiano
{"title":"Further Insights into the Measurement of Free Polysaccharide in Meningococcal Conjugate Vaccines.","authors":"Nicola J Beresford, Gianluigi De Benedetto, Kay Lockyer, Fang Gao, Karena Burkin, Karan Lalwani, Barbara Bolgiano","doi":"10.3390/vaccines13020167","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives</b>: The purpose of this study was to further characterize the ultrafiltration (UF) method for determining free saccharide levels in glycoconjugate vaccines and compare it with other methods used for the determination of free saccharide levels in meningococcal glycoconjugate vaccines. <b>Methods</b>: We performed experiments on both meningococcal glycoconjugates and capsular polysaccharides, and compared UF, deoxycholate (DOC) precipitation, and solid-phase extraction (SPE) methods. Meningococcal capsular polysaccharides from groups A (MenA), C (MenC), and W (MenW) were depolymerized and characterized using SEC-MALS (size-exclusion chromatography with multi-angle laser light scattering) to determine the molecular weight and hydrodynamic size and then subjected to UF. The free saccharide content was quantified using HPAEC-PAD (high-performance anion-exchange chromatography with pulsed amperometric detection). <b>Results</b>: The characterization of size-reduced group C polysaccharide revealed weight-average molecular mass (Mw) ranging from 22,200 g/mol to 287,300 g/mol and hydrodynamic radii of 3.7 to 19.5 nm. Pore size studies confirmed that polysaccharides with diameters up to 15 nm filtered through the 100 kDa cellulose membrane. The smallest PS fragment tested (22,200 g/mol, 7.4 nm diameter) was partially recovered from the 30 kDa membrane. For MenC-CRM<sub>197</sub>, DOC yielded the lowest free saccharide content (<1%), UF gave moderate results (7-8%), and SPE showed the highest and most variable values (up to 15%). For MenA- and MenW-CRM<sub>197</sub>, UF and DOC consistently provided low free saccharide levels (<2% and 3-11%, respectively). <b>Conclusions:</b> The upper limits on the size of free group C meningococcal polysaccharides that can be ultrafiltered were assessed. Differences in the relative amount of free saccharide were observed between various methods used to control meningococcal conjugate vaccines.</p>","PeriodicalId":23634,"journal":{"name":"Vaccines","volume":"13 2","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/vaccines13020167","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The purpose of this study was to further characterize the ultrafiltration (UF) method for determining free saccharide levels in glycoconjugate vaccines and compare it with other methods used for the determination of free saccharide levels in meningococcal glycoconjugate vaccines. Methods: We performed experiments on both meningococcal glycoconjugates and capsular polysaccharides, and compared UF, deoxycholate (DOC) precipitation, and solid-phase extraction (SPE) methods. Meningococcal capsular polysaccharides from groups A (MenA), C (MenC), and W (MenW) were depolymerized and characterized using SEC-MALS (size-exclusion chromatography with multi-angle laser light scattering) to determine the molecular weight and hydrodynamic size and then subjected to UF. The free saccharide content was quantified using HPAEC-PAD (high-performance anion-exchange chromatography with pulsed amperometric detection). Results: The characterization of size-reduced group C polysaccharide revealed weight-average molecular mass (Mw) ranging from 22,200 g/mol to 287,300 g/mol and hydrodynamic radii of 3.7 to 19.5 nm. Pore size studies confirmed that polysaccharides with diameters up to 15 nm filtered through the 100 kDa cellulose membrane. The smallest PS fragment tested (22,200 g/mol, 7.4 nm diameter) was partially recovered from the 30 kDa membrane. For MenC-CRM197, DOC yielded the lowest free saccharide content (<1%), UF gave moderate results (7-8%), and SPE showed the highest and most variable values (up to 15%). For MenA- and MenW-CRM197, UF and DOC consistently provided low free saccharide levels (<2% and 3-11%, respectively). Conclusions: The upper limits on the size of free group C meningococcal polysaccharides that can be ultrafiltered were assessed. Differences in the relative amount of free saccharide were observed between various methods used to control meningococcal conjugate vaccines.
VaccinesPharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
8.90
自引率
16.70%
发文量
1853
审稿时长
18.06 days
期刊介绍:
Vaccines (ISSN 2076-393X) is an international, peer-reviewed open access journal focused on laboratory and clinical vaccine research, utilization and immunization. Vaccines publishes high quality reviews, regular research papers, communications and case reports.