Feasibility Study of Photoelectrochemical Sensing of Glucose and Urea Using BiVO4 and BiVO4/BiOCl Photoanodes.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-02-19 DOI:10.3390/s25041260
Monika Skruodiene, Jelena Kovger-Jarosevic, Irena Savickaja, Jurga Juodkazyte, Milda Petruleviciene
{"title":"Feasibility Study of Photoelectrochemical Sensing of Glucose and Urea Using BiVO<sub>4</sub> and BiVO<sub>4</sub>/BiOCl Photoanodes.","authors":"Monika Skruodiene, Jelena Kovger-Jarosevic, Irena Savickaja, Jurga Juodkazyte, Milda Petruleviciene","doi":"10.3390/s25041260","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the photoelectrochemical (PEC) performance of molybdenum-doped bismuth vanadate (Mo-doped BiVO<sub>4</sub>) and its heterojunction with the BiOCl layer in glucose and urea sensing. Photoelectrochemical analyses, including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), revealed that the formation of a heterojunction enhanced charge carrier separation. The impact of the interaction between the surface of the photoanode and analytes on sensing performance was systematically evaluated. Among the tested configurations, Mo-doped BiVO<sub>4</sub> exhibited superior glucose sensing with a limit of detection (LOD) of 0.173 µM, while BiVO<sub>4</sub>/BiOCl demonstrated an LOD of 2.474 µM. In the context of urea sensing, Mo-doped BiVO<sub>4</sub> demonstrated an LOD of 0.656 µM, while BiVO<sub>4</sub>/BiOCl exhibited an LOD of 0.918 µM. Notably, despite the enhanced PEC activity observed in heterostructured samples, Mo-doped BiVO<sub>4</sub> exhibited superior sensing performance, attributable to good interaction with analytes. The photocurrent response trends-an increase with glucose concentration and a decrease with urea concentration-were attributed to oxidation and adsorption phenomena on the photoanode surface. These findings underscore the critical role of photoanode surface engineering in advancing PEC sensor technology, paving the way for more efficient environmental and biomedical applications.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861178/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25041260","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the photoelectrochemical (PEC) performance of molybdenum-doped bismuth vanadate (Mo-doped BiVO4) and its heterojunction with the BiOCl layer in glucose and urea sensing. Photoelectrochemical analyses, including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), revealed that the formation of a heterojunction enhanced charge carrier separation. The impact of the interaction between the surface of the photoanode and analytes on sensing performance was systematically evaluated. Among the tested configurations, Mo-doped BiVO4 exhibited superior glucose sensing with a limit of detection (LOD) of 0.173 µM, while BiVO4/BiOCl demonstrated an LOD of 2.474 µM. In the context of urea sensing, Mo-doped BiVO4 demonstrated an LOD of 0.656 µM, while BiVO4/BiOCl exhibited an LOD of 0.918 µM. Notably, despite the enhanced PEC activity observed in heterostructured samples, Mo-doped BiVO4 exhibited superior sensing performance, attributable to good interaction with analytes. The photocurrent response trends-an increase with glucose concentration and a decrease with urea concentration-were attributed to oxidation and adsorption phenomena on the photoanode surface. These findings underscore the critical role of photoanode surface engineering in advancing PEC sensor technology, paving the way for more efficient environmental and biomedical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信