Synergistic Effect of Microbial-Induced Carbonate Precipitation Modified with Hydroxypropyl Methylcellulose on Improving Loess Disintegration and Seepage Resistance.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-02-19 DOI:10.3390/polym17040548
Xingyu Wang, Hong Sun
{"title":"Synergistic Effect of Microbial-Induced Carbonate Precipitation Modified with Hydroxypropyl Methylcellulose on Improving Loess Disintegration and Seepage Resistance.","authors":"Xingyu Wang, Hong Sun","doi":"10.3390/polym17040548","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial-induced carbonate precipitation (MICP) is an eco-friendly soil stabilization technique. This study explores the synergistic effects of incorporating hydroxypropyl methylcellulose (HPMC) into the MICP process to enhance the disintegration and seepage resistance of loess. A series of disintegration, seepage, scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) tests were conducted. The results show that HPMC forms protective membranes around calcium carbonate crystals produced by MICP and soil aggregates, which enhance cementation, reduce soluble salt dissolution, promote soil particle aggregation, and seal pore structures. At the optimal 0.4% HPMC dosage, the maximum accumulative disintegration percentage and the disintegration velocity decreased to zero. Additionally, HPMC-modified MICP reduced the amount, size, and flow velocity of seepage channels in loess. The integration of MICP with HPMC provides an efficient and sustainable solution for mitigating loess disintegration and seepage issues.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858998/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17040548","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial-induced carbonate precipitation (MICP) is an eco-friendly soil stabilization technique. This study explores the synergistic effects of incorporating hydroxypropyl methylcellulose (HPMC) into the MICP process to enhance the disintegration and seepage resistance of loess. A series of disintegration, seepage, scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) tests were conducted. The results show that HPMC forms protective membranes around calcium carbonate crystals produced by MICP and soil aggregates, which enhance cementation, reduce soluble salt dissolution, promote soil particle aggregation, and seal pore structures. At the optimal 0.4% HPMC dosage, the maximum accumulative disintegration percentage and the disintegration velocity decreased to zero. Additionally, HPMC-modified MICP reduced the amount, size, and flow velocity of seepage channels in loess. The integration of MICP with HPMC provides an efficient and sustainable solution for mitigating loess disintegration and seepage issues.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信