Docking guidance with experimental ligand structural density improves docking pose prediction and virtual screening performance.

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2025-03-01 DOI:10.1002/pro.70082
Althea T Hansel-Harris, Andreas F Tillack, Diogo Santos-Martins, Matthew Holcomb, Stefano Forli
{"title":"Docking guidance with experimental ligand structural density improves docking pose prediction and virtual screening performance.","authors":"Althea T Hansel-Harris, Andreas F Tillack, Diogo Santos-Martins, Matthew Holcomb, Stefano Forli","doi":"10.1002/pro.70082","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in structural biology have led to the publication of a wealth of high-resolution x-ray crystallography (XRC) and cryo-EM macromolecule structures, including many complexes with small molecules of interest for drug design. While it is common to incorporate information from the atomic coordinates of these complexes into docking (e.g., pharmacophore models or scaffold hopping), there are limited methods to directly leverage the underlying density information. This is desirable because it does not rely on the determination of relevant coordinates, which may require expert intervention, but instead interprets all density as indicative of regions to which a ligand may be bound. To do so, we have developed CryoXKit, a tool to incorporate experimental densities from either cryo-EM or XRC as a biasing potential on heavy atoms during docking. Using this structural density guidance with AutoDock-GPU, we found significant improvements in re-docking and cross-docking, important pose prediction tasks, compared with the unmodified AutoDock4 force field. Failures in cross-docking tasks are additionally reflective of changes in the positioning of pharmacophores in the site, suggesting it is a fundamental limitation of transferring information between complexes. We additionally found, against a set of targets selected from the LIT-PCBA dataset, that rescoring of these improved poses leads to better discriminatory power in virtual screenings for selected targets. Overall, CryoXKit provides a user-friendly method for improving docking performance with experimental data while requiring no a priori pharmacophore definition and at virtually no computational expense. Map-modification code available at: https://github.com/forlilab/CryoXKit.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 3","pages":"e70082"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854350/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70082","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in structural biology have led to the publication of a wealth of high-resolution x-ray crystallography (XRC) and cryo-EM macromolecule structures, including many complexes with small molecules of interest for drug design. While it is common to incorporate information from the atomic coordinates of these complexes into docking (e.g., pharmacophore models or scaffold hopping), there are limited methods to directly leverage the underlying density information. This is desirable because it does not rely on the determination of relevant coordinates, which may require expert intervention, but instead interprets all density as indicative of regions to which a ligand may be bound. To do so, we have developed CryoXKit, a tool to incorporate experimental densities from either cryo-EM or XRC as a biasing potential on heavy atoms during docking. Using this structural density guidance with AutoDock-GPU, we found significant improvements in re-docking and cross-docking, important pose prediction tasks, compared with the unmodified AutoDock4 force field. Failures in cross-docking tasks are additionally reflective of changes in the positioning of pharmacophores in the site, suggesting it is a fundamental limitation of transferring information between complexes. We additionally found, against a set of targets selected from the LIT-PCBA dataset, that rescoring of these improved poses leads to better discriminatory power in virtual screenings for selected targets. Overall, CryoXKit provides a user-friendly method for improving docking performance with experimental data while requiring no a priori pharmacophore definition and at virtually no computational expense. Map-modification code available at: https://github.com/forlilab/CryoXKit.

利用实验配体结构密度进行对接指导可提高对接姿势预测和虚拟筛选性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信