The Structural Design of a New Graftable Antioxidant and the Theoretical Study of Its Role in the Cross-Linking Reaction Process of Polyethylene.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-02-19 DOI:10.3390/polym17040546
Yang Du, Hui Zhang, Chi Deng, Xia Du, Yan Shang, Xuan Wang, Qingguo Chen, Zesheng Li
{"title":"The Structural Design of a New Graftable Antioxidant and the Theoretical Study of Its Role in the Cross-Linking Reaction Process of Polyethylene.","authors":"Yang Du, Hui Zhang, Chi Deng, Xia Du, Yan Shang, Xuan Wang, Qingguo Chen, Zesheng Li","doi":"10.3390/polym17040546","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-linked polyethylene (XLPE) insulation is used in most advanced power cable technology. However, in traditional cross-linking, the conductivity of the cross-linking system sharply increases due to the presence of additives (antioxidants and cross-linked agents). Therefore, reducing the number of antioxidants to further reduce conductivity is a very promising method. The structural design of a new dual-functional antioxidant 5-allyloxy-2-hydroxyl-3-tert-butylbenzophenone (5ATB) has been established. The antioxidant behavior and grafting reaction of 5ATB after photocatalysis under ultraviolet (UV) conditions were further studied using density functional theory (DFT). The reaction potential energy information of the six reaction channels at the B3LYP/6-311+G(<i>d,p</i>) level were obtained. The calculation results indicated that the reaction Gibbs energy barrier of 5ATB with O<sub>2</sub> is approximately 0.48 eV lower than that of the polyethylene chain with O<sub>2</sub> to achieve an anti-oxidative effect. Furthermore, the reaction-active site of 5ATB accepting H is located on the C of CH<sub>2</sub> in a C=C double bond, as demonstrated by an analysis of NBO charge populations. The proposed mechanism has the potential to further expand the design concept of insulation materials for advanced future power cables.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859502/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17040546","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-linked polyethylene (XLPE) insulation is used in most advanced power cable technology. However, in traditional cross-linking, the conductivity of the cross-linking system sharply increases due to the presence of additives (antioxidants and cross-linked agents). Therefore, reducing the number of antioxidants to further reduce conductivity is a very promising method. The structural design of a new dual-functional antioxidant 5-allyloxy-2-hydroxyl-3-tert-butylbenzophenone (5ATB) has been established. The antioxidant behavior and grafting reaction of 5ATB after photocatalysis under ultraviolet (UV) conditions were further studied using density functional theory (DFT). The reaction potential energy information of the six reaction channels at the B3LYP/6-311+G(d,p) level were obtained. The calculation results indicated that the reaction Gibbs energy barrier of 5ATB with O2 is approximately 0.48 eV lower than that of the polyethylene chain with O2 to achieve an anti-oxidative effect. Furthermore, the reaction-active site of 5ATB accepting H is located on the C of CH2 in a C=C double bond, as demonstrated by an analysis of NBO charge populations. The proposed mechanism has the potential to further expand the design concept of insulation materials for advanced future power cables.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信