Physical Activity in Pre-Ambulatory Children with Cerebral Palsy: An Exploratory Validation Study to Distinguish Active vs. Sedentary Time Using Wearable Sensors.
Julie M Orlando, Beth A Smith, Jocelyn F Hafer, Athylia Paremski, Matthew Amodeo, Michele A Lobo, Laura A Prosser
{"title":"Physical Activity in Pre-Ambulatory Children with Cerebral Palsy: An Exploratory Validation Study to Distinguish Active vs. Sedentary Time Using Wearable Sensors.","authors":"Julie M Orlando, Beth A Smith, Jocelyn F Hafer, Athylia Paremski, Matthew Amodeo, Michele A Lobo, Laura A Prosser","doi":"10.3390/s25041261","DOIUrl":null,"url":null,"abstract":"<p><p>Wearable inertial sensor technology affords opportunities to record the physical activity of young children in their natural environments. The interpretation of these data, however, requires validation. The purpose of this study was to develop and establish the criterion validity of a method of quantifying active and sedentary physical activity using an inertial sensor for pre-ambulatory children with cerebral palsy. Ten participants were video recorded during 30 min physical therapy sessions that encouraged gross motor play activities, and the video recording was behaviorally coded to identify active and sedentary time. A receiver operating characteristic curve identified the optimal threshold to maximize true positive and minimize false positive active time for eight participants in the development dataset. The threshold was 0.417 m/s<sup>2</sup> and was then validated with the remaining two participants; the percent of true positives and true negatives was 92.2 and 89.7%, respectively. We conclude that there is potential for raw sensor data to be used to quantify active and sedentary time in pre-ambulatory children with physical disability, and raw acceleration data may be more generalizable than the sensor-specific activity counts commonly reported in the literature.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25041261","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable inertial sensor technology affords opportunities to record the physical activity of young children in their natural environments. The interpretation of these data, however, requires validation. The purpose of this study was to develop and establish the criterion validity of a method of quantifying active and sedentary physical activity using an inertial sensor for pre-ambulatory children with cerebral palsy. Ten participants were video recorded during 30 min physical therapy sessions that encouraged gross motor play activities, and the video recording was behaviorally coded to identify active and sedentary time. A receiver operating characteristic curve identified the optimal threshold to maximize true positive and minimize false positive active time for eight participants in the development dataset. The threshold was 0.417 m/s2 and was then validated with the remaining two participants; the percent of true positives and true negatives was 92.2 and 89.7%, respectively. We conclude that there is potential for raw sensor data to be used to quantify active and sedentary time in pre-ambulatory children with physical disability, and raw acceleration data may be more generalizable than the sensor-specific activity counts commonly reported in the literature.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.