Cellulose-Derived Battery Separators: A Minireview on Advances Towards Environmental Sustainability.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-02-09 DOI:10.3390/polym17040456
Tayse Circe Turossi, Heitor Luiz Ornaghi Júnior, Francisco Maciel Monticeli, Otávio Titton Dias, Ademir José Zattera
{"title":"Cellulose-Derived Battery Separators: A Minireview on Advances Towards Environmental Sustainability.","authors":"Tayse Circe Turossi, Heitor Luiz Ornaghi Júnior, Francisco Maciel Monticeli, Otávio Titton Dias, Ademir José Zattera","doi":"10.3390/polym17040456","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulose-derived battery separators have emerged as a viable sustainable alternative to conventional synthetic materials like polypropylene and polyethylene. Sourced from renewable and biodegradable materials, cellulose derivatives-such as nanofibers, nanocrystals, cellulose acetate, bacterial cellulose, and regenerated cellulose-exhibit a reduced environmental footprint while enhancing battery safety and performance. One of the key advantages of cellulose is its ability to act as a hybrid separator, using its unique properties to improve the performance and durability of battery systems. These separators can consist of cellulose particles combined with supporting polymers, or even a pure cellulose membrane enhanced by the incorporation of additives. Nevertheless, the manufacturing of cellulose separators encounters obstacles due to the constraints of existing production techniques, including electrospinning, vacuum filtration, and phase inversion. Although these methods are effective, they pose challenges for large-scale industrial application. This review examines the characteristics of cellulose and its derivatives, alongside various processing techniques for fabricating separators and assessing their efficacy in battery applications. Additionally, it will consider the environmental implications and the primary challenges and opportunities associated with the use of cellulose separators in energy storage systems. Ultimately, the review underscores the significance of cellulose-based battery separators as a promising approach that aligns with the increasing demand for sustainable technologies in the energy storage domain.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859250/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17040456","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose-derived battery separators have emerged as a viable sustainable alternative to conventional synthetic materials like polypropylene and polyethylene. Sourced from renewable and biodegradable materials, cellulose derivatives-such as nanofibers, nanocrystals, cellulose acetate, bacterial cellulose, and regenerated cellulose-exhibit a reduced environmental footprint while enhancing battery safety and performance. One of the key advantages of cellulose is its ability to act as a hybrid separator, using its unique properties to improve the performance and durability of battery systems. These separators can consist of cellulose particles combined with supporting polymers, or even a pure cellulose membrane enhanced by the incorporation of additives. Nevertheless, the manufacturing of cellulose separators encounters obstacles due to the constraints of existing production techniques, including electrospinning, vacuum filtration, and phase inversion. Although these methods are effective, they pose challenges for large-scale industrial application. This review examines the characteristics of cellulose and its derivatives, alongside various processing techniques for fabricating separators and assessing their efficacy in battery applications. Additionally, it will consider the environmental implications and the primary challenges and opportunities associated with the use of cellulose separators in energy storage systems. Ultimately, the review underscores the significance of cellulose-based battery separators as a promising approach that aligns with the increasing demand for sustainable technologies in the energy storage domain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信