{"title":"An investigation into the sex dependence of post-reperfusion cardiac mitochondrial function and redox balance in chronically stressed rats.","authors":"Megan Cairns, Jasmine Andrews, Caitlin Odendaal, Cassidy O'Brien, Erna Marais, Gerald Maarman, Balindiwe Sishi, Danzil Joseph, Fanie Rautenbach, Jeanine L Marnewick, M Faadiel Essop","doi":"10.14814/phy2.70185","DOIUrl":null,"url":null,"abstract":"<p><p>Although mitochondrial alterations are implicated in cardiac pathologies, sex-specific changes following chronic stress and ischemia-reperfusion injury are poorly characterized. Male and female Wistar rats underwent chronic restraint stress (CRS) for 4 weeks versus controls, whereafter ex vivo hearts were subjected to regional ischemia and reperfusion. Post-reperfusion hearts were dissected into ischemia-reperfused and non-ischemic regions with high-resolution mitochondrial respirometry, and oxidative stress assays performed. CRS males displayed increased routine and fatty acid β-oxidation respiration in non-ischemic tissues but lowered ETF-linked LEAK contributions to overall electron transfer system capacity ratios in ischemia-reperfused regions versus controls. CRS males exhibited lowered superoxide dismutase activity and increased lipid peroxidation in well-perfused regions versus controls. Female CRS hearts showed attenuated ETF-linked LEAK respiration and increased lipid peroxidation versus controls in non-ischemic tissue but a lowered RE ratio (measure of mitochondrial coupling) with ischemia-reperfusion. Our findings highlight the heart's sexually dimorphic response to chronic stress and ischemic injury, with female hearts showing oxidative damage in non-ischemic tissues together with relatively intact mitochondrial function in ischemia-reperfused tissues.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 5","pages":"e70185"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859663/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although mitochondrial alterations are implicated in cardiac pathologies, sex-specific changes following chronic stress and ischemia-reperfusion injury are poorly characterized. Male and female Wistar rats underwent chronic restraint stress (CRS) for 4 weeks versus controls, whereafter ex vivo hearts were subjected to regional ischemia and reperfusion. Post-reperfusion hearts were dissected into ischemia-reperfused and non-ischemic regions with high-resolution mitochondrial respirometry, and oxidative stress assays performed. CRS males displayed increased routine and fatty acid β-oxidation respiration in non-ischemic tissues but lowered ETF-linked LEAK contributions to overall electron transfer system capacity ratios in ischemia-reperfused regions versus controls. CRS males exhibited lowered superoxide dismutase activity and increased lipid peroxidation in well-perfused regions versus controls. Female CRS hearts showed attenuated ETF-linked LEAK respiration and increased lipid peroxidation versus controls in non-ischemic tissue but a lowered RE ratio (measure of mitochondrial coupling) with ischemia-reperfusion. Our findings highlight the heart's sexually dimorphic response to chronic stress and ischemic injury, with female hearts showing oxidative damage in non-ischemic tissues together with relatively intact mitochondrial function in ischemia-reperfused tissues.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.