{"title":"PLGA-Based Strategies for Intranasal and Pulmonary Applications.","authors":"Hossein Omidian, Renae L Wilson","doi":"10.3390/pharmaceutics17020207","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(D,L-lactide-co-glycolide) (PLGA) has emerged as a cornerstone in the development of advanced drug delivery systems, particularly for intranasal and pulmonary routes. Its biodegradability, biocompatibility, and adaptability make it an ideal platform for addressing challenges associated with conventional therapies. By enabling sustained and controlled drug release, PLGA formulations reduce dosing frequency, improve patient compliance, and enhance therapeutic efficacy. These systems demonstrate versatility, accommodating hydrophilic and hydrophobic drugs, biological molecules, and co-delivery of synergistic agents. Moreover, surface modifications and advanced preparation techniques enhance targeting, bioavailability, and stability, expanding PLGA's applications to treat complex diseases such as tuberculosis, cancer, pulmonary fibrosis, and CNS disorders. This manuscript provides an in-depth review of PLGA's materials, properties, preparation methods, and therapeutic applications, alongside a critical evaluation of challenges and future opportunities in this field.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 2","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17020207","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Poly(D,L-lactide-co-glycolide) (PLGA) has emerged as a cornerstone in the development of advanced drug delivery systems, particularly for intranasal and pulmonary routes. Its biodegradability, biocompatibility, and adaptability make it an ideal platform for addressing challenges associated with conventional therapies. By enabling sustained and controlled drug release, PLGA formulations reduce dosing frequency, improve patient compliance, and enhance therapeutic efficacy. These systems demonstrate versatility, accommodating hydrophilic and hydrophobic drugs, biological molecules, and co-delivery of synergistic agents. Moreover, surface modifications and advanced preparation techniques enhance targeting, bioavailability, and stability, expanding PLGA's applications to treat complex diseases such as tuberculosis, cancer, pulmonary fibrosis, and CNS disorders. This manuscript provides an in-depth review of PLGA's materials, properties, preparation methods, and therapeutic applications, alongside a critical evaluation of challenges and future opportunities in this field.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.