Intranasal Mucoadhesive In Situ Gel of Glibenclamide-Loaded Bilosomes for Enhanced Therapeutic Drug Delivery to the Brain.

IF 4.9 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Meenakshi Tripathi, Laxmi Gharti, Amit Bansal, Hemlata Kaurav, Sandeep Sheth
{"title":"Intranasal Mucoadhesive In Situ Gel of Glibenclamide-Loaded Bilosomes for Enhanced Therapeutic Drug Delivery to the Brain.","authors":"Meenakshi Tripathi, Laxmi Gharti, Amit Bansal, Hemlata Kaurav, Sandeep Sheth","doi":"10.3390/pharmaceutics17020193","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The neuroprotective efficacy of glibenclamide (GLIB) has been demonstrated in multiple rodent models of ischemia, hemorrhagic stroke, traumatic brain damage, spinal cord injury, and metastatic brain tumors. Due to its poor solubility, GLIB has low oral bioavailability, limiting its transportation to the brain via the oral route.</p><p><strong>Objectives: </strong>Here, we attempted to develop and optimize an intranasal mucoadhesive in situ gel of GLIB-loaded bilosomes using a 3<sup>2</sup> Box-Behnken design for brain drug delivery.</p><p><strong>Methods: </strong>To facilitate a longer residence time of the administered dose within the nasal cavity, the prepared bilosomes were loaded into a mucoadhesive in situ gel providing resistance to rapid mucociliary clearance. The amounts of sodium deoxycholate, the cholesterol/Span 40 mixture, and the molar ratio between the mixture's components were chosen as independent variables, while the entrapment efficiency and in vitro drug release were selected as dependent variables.</p><p><strong>Results and conclusions: </strong>The optimal formulation was analyzed for particle size and entrapment efficiency, which were found to be 270.6 nm and 68.39%, respectively. In vitro drug release from optimal formulation after 12 h was 87.29 ± 1.98% as compared to 52.01 ± 2.04% of plain in situ gel of drug. An in vivo brain drug delivery study performed on Swiss albino mice showed that the brain concentration of drug through intranasal administration from mucoadhesive in situ gel of GLIB-bilosomes after 12 h was 2.12 ± 0.16 µg/mL as compared to 0.68 ± 0.04 µg/mL from plain in situ gel of drug. Conclusively, the developed bilosomal formulation offers a favorable intranasal substitute with enhanced therapeutic drug delivery to the brain.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 2","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17020193","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The neuroprotective efficacy of glibenclamide (GLIB) has been demonstrated in multiple rodent models of ischemia, hemorrhagic stroke, traumatic brain damage, spinal cord injury, and metastatic brain tumors. Due to its poor solubility, GLIB has low oral bioavailability, limiting its transportation to the brain via the oral route.

Objectives: Here, we attempted to develop and optimize an intranasal mucoadhesive in situ gel of GLIB-loaded bilosomes using a 32 Box-Behnken design for brain drug delivery.

Methods: To facilitate a longer residence time of the administered dose within the nasal cavity, the prepared bilosomes were loaded into a mucoadhesive in situ gel providing resistance to rapid mucociliary clearance. The amounts of sodium deoxycholate, the cholesterol/Span 40 mixture, and the molar ratio between the mixture's components were chosen as independent variables, while the entrapment efficiency and in vitro drug release were selected as dependent variables.

Results and conclusions: The optimal formulation was analyzed for particle size and entrapment efficiency, which were found to be 270.6 nm and 68.39%, respectively. In vitro drug release from optimal formulation after 12 h was 87.29 ± 1.98% as compared to 52.01 ± 2.04% of plain in situ gel of drug. An in vivo brain drug delivery study performed on Swiss albino mice showed that the brain concentration of drug through intranasal administration from mucoadhesive in situ gel of GLIB-bilosomes after 12 h was 2.12 ± 0.16 µg/mL as compared to 0.68 ± 0.04 µg/mL from plain in situ gel of drug. Conclusively, the developed bilosomal formulation offers a favorable intranasal substitute with enhanced therapeutic drug delivery to the brain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutics
Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍: Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications,  and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信