Shahzeb Ali Samad, Xuanzi Ye, Zhiya Han, Senhe Huang, Chenbao Lu, Junbo Hou, Min Yang, Zhenyu Zhang, Feng Qiu, Xiaodong Zhuang
{"title":"Anion-Exchange Strategy for Ru/RuO<sub>2</sub>-Embedded N/S-<i>Co</i>-Doped Porous Carbon Composites for Electrochemical Nitrogen Fixation.","authors":"Shahzeb Ali Samad, Xuanzi Ye, Zhiya Han, Senhe Huang, Chenbao Lu, Junbo Hou, Min Yang, Zhenyu Zhang, Feng Qiu, Xiaodong Zhuang","doi":"10.3390/polym17040543","DOIUrl":null,"url":null,"abstract":"<p><p>Ionic porous polymers have been widely utilized efficiently to anchor various metal atoms for the preparation of metal-embedded heteroatom-doped porous carbon composites as the active materials for electrocatalytic applications. However, the rational design of the heteroatom and metal elements in HPC-based composites remains a significant challenge, due to the tendency of the aggregation of metal nanoparticles during pyrolysis. In this study, a nitrogen (N)- and sulfur (S)-enriched ionic covalent organic framework (<i>i</i>COF) incorporating viologen and thieno[3,4-b] thiophene (TbT) was constructed via Zincke-type polycondensation. The synthesized <i>i</i>COF possesses a crystalline porous structure with a pore size of 3.05 nm, a low optical band gap of 1.88 eV, and superior ionic conductivity of 10<sup>-2.672</sup> S cm<sup>-1</sup> at 333 K, confirming the ionic and conjugated nature of our novel iCOF. By applying the iCOF as the precursor, a ruthenium and ruthenium(IV) oxide (Ru/RuO<sub>2</sub>) nanoparticle-embedded N/S-co-doped porous carbon composite (NSPC-Ru) was prepared by using a two-step sequence of anion-exchange and pyrolysis processes. In the electrochemical nitrogen reduction reaction (eNRR) application, the NSPC-Ru achieves an impressive NH<sub>3</sub> yield rate of 32.0 μg h<sup>-1</sup> mg<sup>-1</sup> and a Faradaic efficiency of 13.2% at -0.34 V vs. RHE. Thus, this innovative approach proposes a new route for the design of <i>i</i>COF-derived metal-embedded porous carbon composites for enhanced NRR performance.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17040543","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Ionic porous polymers have been widely utilized efficiently to anchor various metal atoms for the preparation of metal-embedded heteroatom-doped porous carbon composites as the active materials for electrocatalytic applications. However, the rational design of the heteroatom and metal elements in HPC-based composites remains a significant challenge, due to the tendency of the aggregation of metal nanoparticles during pyrolysis. In this study, a nitrogen (N)- and sulfur (S)-enriched ionic covalent organic framework (iCOF) incorporating viologen and thieno[3,4-b] thiophene (TbT) was constructed via Zincke-type polycondensation. The synthesized iCOF possesses a crystalline porous structure with a pore size of 3.05 nm, a low optical band gap of 1.88 eV, and superior ionic conductivity of 10-2.672 S cm-1 at 333 K, confirming the ionic and conjugated nature of our novel iCOF. By applying the iCOF as the precursor, a ruthenium and ruthenium(IV) oxide (Ru/RuO2) nanoparticle-embedded N/S-co-doped porous carbon composite (NSPC-Ru) was prepared by using a two-step sequence of anion-exchange and pyrolysis processes. In the electrochemical nitrogen reduction reaction (eNRR) application, the NSPC-Ru achieves an impressive NH3 yield rate of 32.0 μg h-1 mg-1 and a Faradaic efficiency of 13.2% at -0.34 V vs. RHE. Thus, this innovative approach proposes a new route for the design of iCOF-derived metal-embedded porous carbon composites for enhanced NRR performance.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.