Sang Ho Jeon, Min Chang Kim, Haejun Lee, Ju-Hee Oh, Hyun Seo Kim, Heawon Lee, Taehoon Park, Young-Joo Lee
{"title":"A Sequential Ultrafiltration Method to Enhance the Accuracy and Throughput in Plasma Protein Binding Tests.","authors":"Sang Ho Jeon, Min Chang Kim, Haejun Lee, Ju-Hee Oh, Hyun Seo Kim, Heawon Lee, Taehoon Park, Young-Joo Lee","doi":"10.3390/pharmaceutics17020273","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives</b>: Ultrafiltration (UF) is widely accepted as a method for assessing the plasma protein binding (PPB) of drugs. However, it is vulnerable to non-specific binding (NSB) to the device, which can result in inaccuracies. This study presents a straightforward, high-throughput modified UF method aimed at minimizing bias due to NSB. <b>Methods</b>: The modified UF method, sequential UF, features the addition of a 2 min pre-UF phase designed to saturate the NSB in the device, followed by the main 20 min UF procedure, compared to the conventional UF method. To evaluate the feasibility of this sequential UF method, we measured the PPB of nine compounds using sequential UF and compared these results to those obtained with the conventional mass balance UF method, recognized as a standard for NSB correction. <b>Results</b>: The PPB values determined through sequential UF were generally consistent with those derived from the mass balance UF method. The fold differences ranged from 97.9% to 113.8%, with an average of 103.5%. No significant differences were observed between the two methods for all compounds, with the exception of quercetin, which showed an unusually high PPB. <b>Conclusions</b>: Sequential UF was effective in correcting NSB to the device while providing advantages in terms of simplicity and efficiency.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 2","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17020273","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Ultrafiltration (UF) is widely accepted as a method for assessing the plasma protein binding (PPB) of drugs. However, it is vulnerable to non-specific binding (NSB) to the device, which can result in inaccuracies. This study presents a straightforward, high-throughput modified UF method aimed at minimizing bias due to NSB. Methods: The modified UF method, sequential UF, features the addition of a 2 min pre-UF phase designed to saturate the NSB in the device, followed by the main 20 min UF procedure, compared to the conventional UF method. To evaluate the feasibility of this sequential UF method, we measured the PPB of nine compounds using sequential UF and compared these results to those obtained with the conventional mass balance UF method, recognized as a standard for NSB correction. Results: The PPB values determined through sequential UF were generally consistent with those derived from the mass balance UF method. The fold differences ranged from 97.9% to 113.8%, with an average of 103.5%. No significant differences were observed between the two methods for all compounds, with the exception of quercetin, which showed an unusually high PPB. Conclusions: Sequential UF was effective in correcting NSB to the device while providing advantages in terms of simplicity and efficiency.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.