Drug Loss at Arterial Bends Can Dominate Off-Target Drug Delivery by Paclitaxel-Coated Balloons.

IF 4.9 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Linnea Tscheuschner, Efstathios Stratakos, Marios Kostakis, Miltiadis Gravanis, Michalis Katsimpoulas, Giancarlo Pennati, Fragiska Sigala, Abraham R Tzafriri
{"title":"Drug Loss at Arterial Bends Can Dominate Off-Target Drug Delivery by Paclitaxel-Coated Balloons.","authors":"Linnea Tscheuschner, Efstathios Stratakos, Marios Kostakis, Miltiadis Gravanis, Michalis Katsimpoulas, Giancarlo Pennati, Fragiska Sigala, Abraham R Tzafriri","doi":"10.3390/pharmaceutics17020197","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objective</b>: Paclitaxel-coated balloons (PCBs) can deliver efficacious drug concentrations to treated arterial segments but are known to exhibit high tracking losses. We aimed to define the governing factors impacting tracking loss and to contrast its drug distribution consequences with those of PCB inflation at the treatment site. <b>Methods</b>: Four naïve and four in-stent restenosis (ISR) porcine superficial femoral arteries (SFA) were treated with PCBs, and plasma samples were collected post-tracking and post-inflation. Animals were sacrificed <1 h post-intervention, and local, upstream, and downstream tissues were collected for paclitaxel quantification. Computationally driven quantitative benchtop-tracking and frictional PCB-sliding experiments modeled paclitaxel loss and delivery to upstream tissue. <b>Results</b>: Paclitaxel concentrations in plasma peaked pre-inflation and declined 30-fold immediately post-inflation. Correspondingly, losses of 30% and 1% of nominal PCB load were measured in vitro during, respectively, tracking over single bend and during device insertion. Mean paclitaxel concentrations were equally high at ISR and naïve SFA treatment sites (56,984 vs. 79,837 ng/g, <i>p</i> > 0.99) and ranged from 9 to 89 ng/g in tissues downstream of these treatment sites. Sampling of non-target upstream iliac artery tissues revealed paclitaxel concentration of 4351 ± 4084 ng/g. Benchtop sliding of PCB samples onto ex vivo porcine artery samples exhibited efficient, pressure independent frictional paclitaxel transfer (124 µg at 0.05 atm vs 126 µg at 0.1 atm, <i>p</i> > 0.99). <b>Conclusions</b>: PCB interactions at porcine vessel bends led to premature tracking loss, resulting in peak plasma concentrations exceeding post-inflation concentrations, and delivery to upstream tissue that is plausibly explained as arising from efficient friction-mediated coating transfer.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 2","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17020197","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objective: Paclitaxel-coated balloons (PCBs) can deliver efficacious drug concentrations to treated arterial segments but are known to exhibit high tracking losses. We aimed to define the governing factors impacting tracking loss and to contrast its drug distribution consequences with those of PCB inflation at the treatment site. Methods: Four naïve and four in-stent restenosis (ISR) porcine superficial femoral arteries (SFA) were treated with PCBs, and plasma samples were collected post-tracking and post-inflation. Animals were sacrificed <1 h post-intervention, and local, upstream, and downstream tissues were collected for paclitaxel quantification. Computationally driven quantitative benchtop-tracking and frictional PCB-sliding experiments modeled paclitaxel loss and delivery to upstream tissue. Results: Paclitaxel concentrations in plasma peaked pre-inflation and declined 30-fold immediately post-inflation. Correspondingly, losses of 30% and 1% of nominal PCB load were measured in vitro during, respectively, tracking over single bend and during device insertion. Mean paclitaxel concentrations were equally high at ISR and naïve SFA treatment sites (56,984 vs. 79,837 ng/g, p > 0.99) and ranged from 9 to 89 ng/g in tissues downstream of these treatment sites. Sampling of non-target upstream iliac artery tissues revealed paclitaxel concentration of 4351 ± 4084 ng/g. Benchtop sliding of PCB samples onto ex vivo porcine artery samples exhibited efficient, pressure independent frictional paclitaxel transfer (124 µg at 0.05 atm vs 126 µg at 0.1 atm, p > 0.99). Conclusions: PCB interactions at porcine vessel bends led to premature tracking loss, resulting in peak plasma concentrations exceeding post-inflation concentrations, and delivery to upstream tissue that is plausibly explained as arising from efficient friction-mediated coating transfer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutics
Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍: Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications,  and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信