Optimizing Intranasal Amisulpride Loaded Nanostructured Lipid Carriers: Formulation, Development, and Characterization Parameters.

Q2 Pharmacology, Toxicology and Pharmaceutics
Manar Adnan Tamer, Hanan Jalal Kassab
{"title":"Optimizing Intranasal Amisulpride Loaded Nanostructured Lipid Carriers: Formulation, Development, and Characterization Parameters.","authors":"Manar Adnan Tamer, Hanan Jalal Kassab","doi":"10.2174/0122117385301604240226111533","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nanostructured lipid carriers (NLCs) are lipid-based nanoparticles composed of a mixture of solid and liquid lipids, which are stabilized by the outer surface of a surfactant.</p><p><strong>Objectives: </strong>This research aimed to prepare intranasal nanostructured lipid carriers loaded with amisulpride to enhance its dissolution and bioavailability using different formulation compositions.</p><p><strong>Methods: </strong>Amisulpride nanostructured lipid carriers were formulated using ultra-sonication methods. Solid lipids like stearic acid, palmitic acid, and glyceryl monostearate were used, while liquid lipids like oleic acid, Imwitor 988, and isopropyl myristate were employed. Surfactants used were cremophor®EL, tween 80, and span 20 with different co-surfactants: Transcutol HP, triacetin, and propylene glycol in different ratios. The key metrics used in this study's evaluation were particle size, polydispersity index, zeta potential, entrapment efficiency, and loading efficiency. The formulations with the best characteristics were also subjected to an <i>in-vitro</i> release test.</p><p><strong>Results: </strong>The results showed a significant shift in some evaluation criteria with a non-significant change in other characterizations upon switching between different types and ratios of compositions. A biphasic release pattern was also observed. The optimum formula F19 was found to have 68.309±0.38 nm, 0.2408±0.004, -20.64±0.11 mV, 95.75±0.26 and 18.07±0.36, respectively. It was safe on the sheep nasal membrane.</p><p><strong>Conclusion: </strong>The right combination of the formulation compositions based on studying the effect of each factor on the main formulation characteristics can serve as the basis for a successful intranasal amisulpride-loaded nanostructured lipid carrier.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":"13 2","pages":"287-302"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385301604240226111533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Nanostructured lipid carriers (NLCs) are lipid-based nanoparticles composed of a mixture of solid and liquid lipids, which are stabilized by the outer surface of a surfactant.

Objectives: This research aimed to prepare intranasal nanostructured lipid carriers loaded with amisulpride to enhance its dissolution and bioavailability using different formulation compositions.

Methods: Amisulpride nanostructured lipid carriers were formulated using ultra-sonication methods. Solid lipids like stearic acid, palmitic acid, and glyceryl monostearate were used, while liquid lipids like oleic acid, Imwitor 988, and isopropyl myristate were employed. Surfactants used were cremophor®EL, tween 80, and span 20 with different co-surfactants: Transcutol HP, triacetin, and propylene glycol in different ratios. The key metrics used in this study's evaluation were particle size, polydispersity index, zeta potential, entrapment efficiency, and loading efficiency. The formulations with the best characteristics were also subjected to an in-vitro release test.

Results: The results showed a significant shift in some evaluation criteria with a non-significant change in other characterizations upon switching between different types and ratios of compositions. A biphasic release pattern was also observed. The optimum formula F19 was found to have 68.309±0.38 nm, 0.2408±0.004, -20.64±0.11 mV, 95.75±0.26 and 18.07±0.36, respectively. It was safe on the sheep nasal membrane.

Conclusion: The right combination of the formulation compositions based on studying the effect of each factor on the main formulation characteristics can serve as the basis for a successful intranasal amisulpride-loaded nanostructured lipid carrier.

优化鼻内氨硫pride负载的纳米结构脂质载体:配方,开发和表征参数。
背景:纳米结构脂质载体(nlc)是由固体和液体脂质混合物组成的基于脂质的纳米颗粒,由表面活性剂的外表面稳定。目的:本研究旨在制备含氨硫脲的鼻内纳米脂质载体,以提高其溶出度和生物利用度。方法:采用超声法制备氨硫脲纳米脂质载体。固体脂质如硬脂酸、棕榈酸和单硬脂酸甘油酯被使用,而液体脂质如油酸、Imwitor 988和肉豆蔻酸异丙酯被使用。使用的表面活性剂为cremophor®EL, tween 80和span 20,不同的助表面活性剂:Transcutol HP,三乙酸酯和丙二醇的不同比例。本研究评估的关键指标是粒径、多分散性指数、zeta电位、捕获效率和装载效率。并进行了体外释放试验。结果:结果显示,在不同类型和比例的组合物之间切换时,一些评价标准发生了显著变化,而其他特征的变化不显著。两相释放模式也被观察到。最佳配方F19的波长分别为68.309±0.38 nm、0.2408±0.004、-20.64±0.11 mV、95.75±0.26和18.07±0.36。它在羊的鼻膜上是安全的。结论:在研究各因素对主要制剂特性影响的基础上,选择合适的制剂成分组合,可作为研制成功含氨硫脲鼻内纳米脂质载体的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信