Lei Xiu, Xiaoling Wang, Shaoyun Cheng, Wanling Liu, Lu Wang, Jiaqi Li, Jinrui Zhang, Yaping Xuan, Wei Hu
{"title":"Evaluating the pathogenic and immunological effects of ds-GFP as a control in in vivo RNA interference studies of Schistosoma japonicum.","authors":"Lei Xiu, Xiaoling Wang, Shaoyun Cheng, Wanling Liu, Lu Wang, Jiaqi Li, Jinrui Zhang, Yaping Xuan, Wei Hu","doi":"10.1051/parasite/2025003","DOIUrl":null,"url":null,"abstract":"<p><p>Schistosomiasis affects over 250 million people in 78 countries. Despite praziquantel as the primary treatment, concerns about resistance in schistosomes underscore the need for alternative therapies. The success of RNA interference (RNAi) in schistosomes shows promise for identifying potential drug targets to facilitate drug discovery. Meanwhile, double-stranded RNA (dsRNA) is commonly used in functional gene analysis via RNAi, with double-stranded green fluorescent protein (ds-GFP) widely employed as a control in schistosome-related studies. However, the potential for off-target effects of dsRNAs in various biological systems raises concerns about the reliability of conventional controls in schistosome RNAi experiments. Therefore, this study aims to evaluate the safety and suitability of ds-GFP as an RNAi negative control in Schistosoma japonicum. Our data indicate that ds-GFP is innocuous and exerts no discernible impact on the host's physiology and immune responses. Comprehensive evaluations conducted in mice showed no significant alterations in body and organ weights. While a splenic immune response was observed, histopathological examinations of multiple organs confirmed the absence of significant lesions following ds-GFP treatment. Additionally, S. japonicum morphology, reproductive capacity, and host responses to parasite eggs showed no significant variations. Taken together, these findings bolster the endorsement of ds-GFP as an appropriate negative control in S. japonicum RNAi experiments, offering reliable outcomes crucial for advancing research on schistosomiasis and related parasitic diseases.</p>","PeriodicalId":19796,"journal":{"name":"Parasite","volume":"32 ","pages":"16"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasite","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1051/parasite/2025003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Schistosomiasis affects over 250 million people in 78 countries. Despite praziquantel as the primary treatment, concerns about resistance in schistosomes underscore the need for alternative therapies. The success of RNA interference (RNAi) in schistosomes shows promise for identifying potential drug targets to facilitate drug discovery. Meanwhile, double-stranded RNA (dsRNA) is commonly used in functional gene analysis via RNAi, with double-stranded green fluorescent protein (ds-GFP) widely employed as a control in schistosome-related studies. However, the potential for off-target effects of dsRNAs in various biological systems raises concerns about the reliability of conventional controls in schistosome RNAi experiments. Therefore, this study aims to evaluate the safety and suitability of ds-GFP as an RNAi negative control in Schistosoma japonicum. Our data indicate that ds-GFP is innocuous and exerts no discernible impact on the host's physiology and immune responses. Comprehensive evaluations conducted in mice showed no significant alterations in body and organ weights. While a splenic immune response was observed, histopathological examinations of multiple organs confirmed the absence of significant lesions following ds-GFP treatment. Additionally, S. japonicum morphology, reproductive capacity, and host responses to parasite eggs showed no significant variations. Taken together, these findings bolster the endorsement of ds-GFP as an appropriate negative control in S. japonicum RNAi experiments, offering reliable outcomes crucial for advancing research on schistosomiasis and related parasitic diseases.
期刊介绍:
Parasite is an international open-access, peer-reviewed, online journal publishing high quality papers on all aspects of human and animal parasitology. Reviews, articles and short notes may be submitted. Fields include, but are not limited to: general, medical and veterinary parasitology; morphology, including ultrastructure; parasite systematics, including entomology, acarology, helminthology and protistology, and molecular analyses; molecular biology and biochemistry; immunology of parasitic diseases; host-parasite relationships; ecology and life history of parasites; epidemiology; therapeutics; new diagnostic tools.
All papers in Parasite are published in English. Manuscripts should have a broad interest and must not have been published or submitted elsewhere. No limit is imposed on the length of manuscripts, but they should be concisely written. Papers of limited interest such as case reports, epidemiological studies in punctual areas, isolated new geographical records, and systematic descriptions of single species will generally not be accepted, but might be considered if the authors succeed in demonstrating their interest.