Thymoquinone-Loaded Chitosan Nanoparticles Combat Testicular Aging and Oxidative Stress Through SIRT1/FOXO3a Activation: An In Vivo and In Vitro Study.

IF 4.9 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Enas A Kasem, Gehan Hamza, Nagi M El-Shafai, Nora F Ghanem, Shawky Mahmoud, Samy M Sayed, Mohammed Ali Alshehri, Laila A Al-Shuraym, Heba I Ghamry, Magdy E Mahfouz, Mustafa Shukry
{"title":"Thymoquinone-Loaded Chitosan Nanoparticles Combat Testicular Aging and Oxidative Stress Through SIRT1/FOXO3a Activation: An In Vivo and In Vitro Study.","authors":"Enas A Kasem, Gehan Hamza, Nagi M El-Shafai, Nora F Ghanem, Shawky Mahmoud, Samy M Sayed, Mohammed Ali Alshehri, Laila A Al-Shuraym, Heba I Ghamry, Magdy E Mahfouz, Mustafa Shukry","doi":"10.3390/pharmaceutics17020210","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Aging is a complex biological process characterized by the accumulation of molecular and cellular damage over time, often driven by oxidative stress. This oxidative stress is particularly detrimental to the testes, where it causes degeneration, reduced testosterone levels, and compromised fertility. D-galactose (D-gal) is commonly used to model aging as it induces oxidative stress, mimicking age-related cellular and molecular damage. Testicular aging is of significant concern due to its implications for reproductive health and hormonal balance. This research examines the protection by thymoquinone (TQ) or thymoquinone-loaded chitosan nanoparticles (NCPs) against D-galactose (D-gal)-induced aging in rat testes, focusing on biochemical, histological, and molecular changes. Aging, which is driven largely by oxidative stress, leads to significant testicular degeneration, reducing fertility. D-gal is widely used to model aging due to its ability to induce oxidative stress and mimic age-related damage. TQ, a bioactive ingredient of <i>Nigella sativa</i>, has earned a reputation for its anti-inflammatory, anti-apoptotic, and antioxidant characteristics, but its therapeutic application is limited by its poor bioavailability. <b>Methods</b>: Thymoquinone was loaded into chitosan nanoparticles (NCPs) to enhance its efficacy, and this was hypothesized to improve its stability and bioavailability. Four groups of male Wistar rats participated in the study: one for the control, one for D-gal, one for D-gal + TQ, and the last one for D-gal + NCP. <b>Results</b>: The results exhibited that D-gal substantially increased oxidative injury, reduced testosterone levels, and caused testicular damage. Treatment with TQ and NCPs significantly reduced oxidative stress, improved antioxidant enzyme levels, and restored testosterone levels, with NCPs showing a stronger protective effect than TQ alone. A histological analysis confirmed that NCPs better preserved testicular structure and function. Additionally, the NCP treatment upregulated the expression of key genes of oxidative stress resistance, mitochondrial function, and reproductive health, including SIRT1, FOXO3a, and TERT. <b>Conclusions:</b> The findings suggest that NCPs offer enhanced protection against aging-related testicular damage compared with TQ alone, which is likely due to the improved bioavailability and stability provided by the nanoparticle delivery system. This research emphasizes the potential of NCPs as a more effective therapeutic strategy for mitigating oxidative stress and age-related reproductive dysfunction. Future research should further explore the mechanisms underlying these protective effects.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 2","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17020210","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Aging is a complex biological process characterized by the accumulation of molecular and cellular damage over time, often driven by oxidative stress. This oxidative stress is particularly detrimental to the testes, where it causes degeneration, reduced testosterone levels, and compromised fertility. D-galactose (D-gal) is commonly used to model aging as it induces oxidative stress, mimicking age-related cellular and molecular damage. Testicular aging is of significant concern due to its implications for reproductive health and hormonal balance. This research examines the protection by thymoquinone (TQ) or thymoquinone-loaded chitosan nanoparticles (NCPs) against D-galactose (D-gal)-induced aging in rat testes, focusing on biochemical, histological, and molecular changes. Aging, which is driven largely by oxidative stress, leads to significant testicular degeneration, reducing fertility. D-gal is widely used to model aging due to its ability to induce oxidative stress and mimic age-related damage. TQ, a bioactive ingredient of Nigella sativa, has earned a reputation for its anti-inflammatory, anti-apoptotic, and antioxidant characteristics, but its therapeutic application is limited by its poor bioavailability. Methods: Thymoquinone was loaded into chitosan nanoparticles (NCPs) to enhance its efficacy, and this was hypothesized to improve its stability and bioavailability. Four groups of male Wistar rats participated in the study: one for the control, one for D-gal, one for D-gal + TQ, and the last one for D-gal + NCP. Results: The results exhibited that D-gal substantially increased oxidative injury, reduced testosterone levels, and caused testicular damage. Treatment with TQ and NCPs significantly reduced oxidative stress, improved antioxidant enzyme levels, and restored testosterone levels, with NCPs showing a stronger protective effect than TQ alone. A histological analysis confirmed that NCPs better preserved testicular structure and function. Additionally, the NCP treatment upregulated the expression of key genes of oxidative stress resistance, mitochondrial function, and reproductive health, including SIRT1, FOXO3a, and TERT. Conclusions: The findings suggest that NCPs offer enhanced protection against aging-related testicular damage compared with TQ alone, which is likely due to the improved bioavailability and stability provided by the nanoparticle delivery system. This research emphasizes the potential of NCPs as a more effective therapeutic strategy for mitigating oxidative stress and age-related reproductive dysfunction. Future research should further explore the mechanisms underlying these protective effects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutics
Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍: Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications,  and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信