Christine Rossmann, Azra Darko, Gerd Kager, Gerhard Ledinski, Willibald Wonisch, Thomas Wagner, Seth Hallström, Gilbert Reibnegger, Margret Paar, Gerhard Cvirn
{"title":"Natural Polyamine Spermidine Inhibits the In Vitro Oxidation of LDL.","authors":"Christine Rossmann, Azra Darko, Gerd Kager, Gerhard Ledinski, Willibald Wonisch, Thomas Wagner, Seth Hallström, Gilbert Reibnegger, Margret Paar, Gerhard Cvirn","doi":"10.3390/molecules30040955","DOIUrl":null,"url":null,"abstract":"<p><p>Spermidine is a natural autophagy-inducer and anti-aging compound. Herein, we investigated a potential autophagy-independent mechanism of spermidine, namely its capability to directly impede LDL oxidation, an early step in atherogenesis. In our in vitro-model, LDL oxidation was induced by the addition of CuCl<sub>2</sub> in the presence of increasing concentrations of spermidine, and the degree of oxidation of the lipid, as well as of the protein part of LDL, was measured. We found that spermidine concentration-dependently inhibited the production of lipid hydroperoxides, malondialdehyde, and oxidation-specific immune epitopes in the LDL particle, associated with decreased relative electrophoretic mobilities, respectively. For example, the LPO content was significantly lower when LDL was oxidized in the presence of 500 µg/mL spermidine (26.9 ± 1.6 nmol/mg LDL) than in the absence of spermidine (180.6 ± 7.7 nmol/mg LDL, <i>p</i> < 0.0001). When oxLDL was obtained under increasing spermidine concentrations, its cytotoxicity in EA.hy926 cells concentration-dependently decreased. Quantum chemical calculations show that the reaction between spermidine and hydroxyl radicals is exergonic. We conclude that spermidine is a direct inhibitor of LDL oxidation due to its capability to scavenge hydroxyl radicals. Thus, spermidine supplementation might be a suitable tool to impede atherogenesis and associated (cardio)vascular diseases. Further prospective clinical studies are needed to evaluate the potential atheroprotective/health-promoting effects of spermidine-rich diets.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30040955","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spermidine is a natural autophagy-inducer and anti-aging compound. Herein, we investigated a potential autophagy-independent mechanism of spermidine, namely its capability to directly impede LDL oxidation, an early step in atherogenesis. In our in vitro-model, LDL oxidation was induced by the addition of CuCl2 in the presence of increasing concentrations of spermidine, and the degree of oxidation of the lipid, as well as of the protein part of LDL, was measured. We found that spermidine concentration-dependently inhibited the production of lipid hydroperoxides, malondialdehyde, and oxidation-specific immune epitopes in the LDL particle, associated with decreased relative electrophoretic mobilities, respectively. For example, the LPO content was significantly lower when LDL was oxidized in the presence of 500 µg/mL spermidine (26.9 ± 1.6 nmol/mg LDL) than in the absence of spermidine (180.6 ± 7.7 nmol/mg LDL, p < 0.0001). When oxLDL was obtained under increasing spermidine concentrations, its cytotoxicity in EA.hy926 cells concentration-dependently decreased. Quantum chemical calculations show that the reaction between spermidine and hydroxyl radicals is exergonic. We conclude that spermidine is a direct inhibitor of LDL oxidation due to its capability to scavenge hydroxyl radicals. Thus, spermidine supplementation might be a suitable tool to impede atherogenesis and associated (cardio)vascular diseases. Further prospective clinical studies are needed to evaluate the potential atheroprotective/health-promoting effects of spermidine-rich diets.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.