Structural Identification of Physalis alkekengi L. Polysaccharides.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yun Zhang, Xuan Wen, Neng Xu, Hongyan Fu, Ge Lv, Wenjie Yu, Lina Wei, Lin Zhao
{"title":"Structural Identification of <i>Physalis alkekengi</i> L. Polysaccharides.","authors":"Yun Zhang, Xuan Wen, Neng Xu, Hongyan Fu, Ge Lv, Wenjie Yu, Lina Wei, Lin Zhao","doi":"10.3390/molecules30040949","DOIUrl":null,"url":null,"abstract":"<p><p><i>Physalis alkekengi</i> L. fruit polysaccharides can reduce blood sugar, regulate blood lipids, and improve intestinal flora structure. However, the specific polysaccharide components exerting these effects are unclear. In this study, we extracted, separated, purified, and characterized the <i>P. alkekengi</i> polysaccharides Phy-1a, Phy-1b, and Phy-1c. Ion chromatography showed that Phy-1b was mainly composed of rhamnose, arabinose, galactose, glucose, and xylose at a molar ratio of 3.0:19.8:47.5:20.9:8.8, and Phy-1c was composed of rhamnose, arabinose, galactose, glucose, xylose, mannose, ribose Galactosamine hydrochloride and Glucosamine hydrochloride at a molar ratio of 10.4:7.9:22.8:30.5:4.6:4.4:19.4:3.9:5.8. Neither of these polysaccharides contained uronic acid, indicating their neutral property. Methylation analysis and nuclear magnetic resonance spectroscopy showed that Phy-1b was mainly composed of terminal sugars (1-Araf); 1,5-Araf; 1,4-Xylp; 1-Glcp; 2,4-Rhap; 1,3-Glcp; 1,4-Galp; 1,4-Glcp; 1,3-Galp; 1,6-Glcp; 1,3,6-Glcp; and 1,4,6-Galp at a molar ratio of 5.2:7.1:7.8:13.7:6.3:11.2:7.0:16.3:7.4:6.0:6.8:5.3, with the main chain being →2)-α-L-Rhap-(1→4)-β-d-Galp-(1→4)-β-d-Galp-(1→[3)-β-d-Glcp-(1]2→3)-β-d-Glcp-(1→[4)-β-d-Glcp-(1]2→ and the branched chains being β-L-Araf-(1→5)-β-L-Araf-(1→, β-d-Glcp-(1→4)-β-d-Xylp-(1→ 3)-β-d-Galp-(1→, and β-d-Glcp-(1→6)-β-d-Glcp-(1→. The three fragments, respectively, pass through the O-4 key of →2,4)-α-l-Rhap-(1→, O-6 key of →4,6)-β-d-Galp-(1→, and O-6 of →3,6)-β-d-Glcp-(1→ connected to the main chain. These results provide a reference for enhancing the utilization value of <i>P. alkekengi</i> resources to promote its high-value and efficient processing.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30040949","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Physalis alkekengi L. fruit polysaccharides can reduce blood sugar, regulate blood lipids, and improve intestinal flora structure. However, the specific polysaccharide components exerting these effects are unclear. In this study, we extracted, separated, purified, and characterized the P. alkekengi polysaccharides Phy-1a, Phy-1b, and Phy-1c. Ion chromatography showed that Phy-1b was mainly composed of rhamnose, arabinose, galactose, glucose, and xylose at a molar ratio of 3.0:19.8:47.5:20.9:8.8, and Phy-1c was composed of rhamnose, arabinose, galactose, glucose, xylose, mannose, ribose Galactosamine hydrochloride and Glucosamine hydrochloride at a molar ratio of 10.4:7.9:22.8:30.5:4.6:4.4:19.4:3.9:5.8. Neither of these polysaccharides contained uronic acid, indicating their neutral property. Methylation analysis and nuclear magnetic resonance spectroscopy showed that Phy-1b was mainly composed of terminal sugars (1-Araf); 1,5-Araf; 1,4-Xylp; 1-Glcp; 2,4-Rhap; 1,3-Glcp; 1,4-Galp; 1,4-Glcp; 1,3-Galp; 1,6-Glcp; 1,3,6-Glcp; and 1,4,6-Galp at a molar ratio of 5.2:7.1:7.8:13.7:6.3:11.2:7.0:16.3:7.4:6.0:6.8:5.3, with the main chain being →2)-α-L-Rhap-(1→4)-β-d-Galp-(1→4)-β-d-Galp-(1→[3)-β-d-Glcp-(1]2→3)-β-d-Glcp-(1→[4)-β-d-Glcp-(1]2→ and the branched chains being β-L-Araf-(1→5)-β-L-Araf-(1→, β-d-Glcp-(1→4)-β-d-Xylp-(1→ 3)-β-d-Galp-(1→, and β-d-Glcp-(1→6)-β-d-Glcp-(1→. The three fragments, respectively, pass through the O-4 key of →2,4)-α-l-Rhap-(1→, O-6 key of →4,6)-β-d-Galp-(1→, and O-6 of →3,6)-β-d-Glcp-(1→ connected to the main chain. These results provide a reference for enhancing the utilization value of P. alkekengi resources to promote its high-value and efficient processing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信