Aleksandra Kędzierska-Sar, Maciej Fronczak, Marta Gmurek, Lucyna Bilińska
{"title":"Stability and Reusability of Tungsten Catalyst on Structured Support in Catalytic Ozonation of Textile Wastewater.","authors":"Aleksandra Kędzierska-Sar, Maciej Fronczak, Marta Gmurek, Lucyna Bilińska","doi":"10.3390/molecules30040969","DOIUrl":null,"url":null,"abstract":"<p><p>Since heterogeneous catalytic ozonation (HCO) has become a leading trend in advanced oxidation processes, finding new prospective catalysts has become crucial. Plasma-enhanced chemical vapor deposition (PECVD) is a method of thin-layer deposition that is useful in catalyst production on structured supports. This study presents a novel tungsten (W)-based catalyst used in HCO for textile wastewater discoloration. By changing PECVD parameters, we were able to design and prepare several types of diverse catalysts in terms of morphology and composition. Energy-dispersive X-ray spectroscopy was used for catalyst characterization and revealed a nano-sized granular morphology. The catalyst thickness was below 500 nm, preserving the geometry of the support. The satisfactory high W catalyst activity in dye removal was investigated through a catalytic test. The increased speed in color removal, represented by the enhancement factor, was equal to 1.47 when comparing single and catalytic ozonation. A high and almost unchanged color removal efficiency was maintained over seven cycles of HCO, allowing for more than 5 h of successful use.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30040969","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Since heterogeneous catalytic ozonation (HCO) has become a leading trend in advanced oxidation processes, finding new prospective catalysts has become crucial. Plasma-enhanced chemical vapor deposition (PECVD) is a method of thin-layer deposition that is useful in catalyst production on structured supports. This study presents a novel tungsten (W)-based catalyst used in HCO for textile wastewater discoloration. By changing PECVD parameters, we were able to design and prepare several types of diverse catalysts in terms of morphology and composition. Energy-dispersive X-ray spectroscopy was used for catalyst characterization and revealed a nano-sized granular morphology. The catalyst thickness was below 500 nm, preserving the geometry of the support. The satisfactory high W catalyst activity in dye removal was investigated through a catalytic test. The increased speed in color removal, represented by the enhancement factor, was equal to 1.47 when comparing single and catalytic ozonation. A high and almost unchanged color removal efficiency was maintained over seven cycles of HCO, allowing for more than 5 h of successful use.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.