The Effect of Farming Systems and Cultivars on the Qualitative and Quantitative Composition of Bioactive Compounds in Winter Wheat (Triticum aestivum L.).
Iwona Kowalska, Agata Soluch, Jarosław Mołdoch, Krzysztof Jończyk
{"title":"The Effect of Farming Systems and Cultivars on the Qualitative and Quantitative Composition of Bioactive Compounds in Winter Wheat (<i>Triticum aestivum</i> L.).","authors":"Iwona Kowalska, Agata Soluch, Jarosław Mołdoch, Krzysztof Jończyk","doi":"10.3390/molecules30040902","DOIUrl":null,"url":null,"abstract":"<p><p><i>Triticum aestivum</i> L. subsp. <i>spelta</i> (cv. Rokosz) and common winter wheat <i>Triticum aestivum</i> L. subsp. <i>aestivum</i> (cv. Arktis, Belissa, Estivus, Fidelius, Hondia, Jantarka, KWS Ozon, Linus, Markiza, Ostka Strzelecka, Pokusa) grown in an organic farming system were analyzed and compared. Furthermore, the productivity of four common wheat cultivars (cv. Fidelius, Hondia, Jantarka, KWS Ozon) grown under four different (organic, conventional integrated, and monoculture) farming systems was compared. Using UPLC-DAD-MS, UPLC-PDA-MS/MS, and TLC-DPPH<sup>•</sup>, nine phenolic acids, nine alkylresorcinols, and their antiradical activity were identified and quantified. In the organic farming system, the highest yield was observed for <i>T. aestivum</i> L. subsp. <i>aestivum</i> cv. Fidelius (4.17 t/ha). Infections of wheat cultivars were low or at a medium level. The highest resistance to <i>Fusarium</i> fungi was shown by cv. Fidelius, which also exhibited the highest alkylresorcinol content and antioxidant capacity. The total phenolic acid content was highest in cv. Rokosz (1302.3 µg/g), followed by common winter wheat cultivars cv. Linus (1135.1 µg/g) and cv. Markiza (1089.6 µg/g). The potential of winter wheat cultivars for human health and their suitability for cultivation in different production systems was determined, showing significant differences in bioactive compounds depending on cultivars, systems, and years.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30040902","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Triticum aestivum L. subsp. spelta (cv. Rokosz) and common winter wheat Triticum aestivum L. subsp. aestivum (cv. Arktis, Belissa, Estivus, Fidelius, Hondia, Jantarka, KWS Ozon, Linus, Markiza, Ostka Strzelecka, Pokusa) grown in an organic farming system were analyzed and compared. Furthermore, the productivity of four common wheat cultivars (cv. Fidelius, Hondia, Jantarka, KWS Ozon) grown under four different (organic, conventional integrated, and monoculture) farming systems was compared. Using UPLC-DAD-MS, UPLC-PDA-MS/MS, and TLC-DPPH•, nine phenolic acids, nine alkylresorcinols, and their antiradical activity were identified and quantified. In the organic farming system, the highest yield was observed for T. aestivum L. subsp. aestivum cv. Fidelius (4.17 t/ha). Infections of wheat cultivars were low or at a medium level. The highest resistance to Fusarium fungi was shown by cv. Fidelius, which also exhibited the highest alkylresorcinol content and antioxidant capacity. The total phenolic acid content was highest in cv. Rokosz (1302.3 µg/g), followed by common winter wheat cultivars cv. Linus (1135.1 µg/g) and cv. Markiza (1089.6 µg/g). The potential of winter wheat cultivars for human health and their suitability for cultivation in different production systems was determined, showing significant differences in bioactive compounds depending on cultivars, systems, and years.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.