Construction and Regulation of Polymer@Silica Microspheres with Double-Shell Hollow Structures.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mingxiu Jiang, Yuanyuan Yang, Jiawei Feng, Zhaopan Wang, Wei Deng
{"title":"Construction and Regulation of Polymer@Silica Microspheres with Double-Shell Hollow Structures.","authors":"Mingxiu Jiang, Yuanyuan Yang, Jiawei Feng, Zhaopan Wang, Wei Deng","doi":"10.3390/molecules30040954","DOIUrl":null,"url":null,"abstract":"<p><p>Microspheres with well-defined hollow structures have been attracting interest due to their unique morphology and fascinating properties. Herein, a strategy for morphology and size control of hollow polymer@silica microspheres is proposed. Multilayer core-shell polymer microspheres, containing substantial carboxyl groups inside, evolve into microspheres with a 304 nm hollow structure after alkali treatment, which are used to construct hollow polymer@silica microspheres by coating the inorganic layer using the layer-by-layer (LBL) and sol-gel methods, respectively. The inorganic shell thickness of hollow polymer@silica microspheres can be adjusted from 15 nm to 33 nm by the self-assembled layers in the LBL method and from 15 nm to 63 nm by the dosage of precursor in the sol-gel method. Compared to the LBL method, the hollow polymer@silica microspheres prepared via the sol-gel method have a uniform and dense inorganic shell, thus ensuring the complete spherical morphology of the microspheres after calcination, even if the inorganic shell thickness is only 15 nm. Moreover, the hollow polymer@silica microspheres prepared via the sol-gel method exhibit improved compression resistance and good opacity, remaining intact at 16,000 psi and providing the corresponding coating with transmittance lower than 35.1%. This work highlights the morphology regulation of microspheres prepared by different methods and provides useful insights for the design of composites microspheres with controllable structures.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30040954","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microspheres with well-defined hollow structures have been attracting interest due to their unique morphology and fascinating properties. Herein, a strategy for morphology and size control of hollow polymer@silica microspheres is proposed. Multilayer core-shell polymer microspheres, containing substantial carboxyl groups inside, evolve into microspheres with a 304 nm hollow structure after alkali treatment, which are used to construct hollow polymer@silica microspheres by coating the inorganic layer using the layer-by-layer (LBL) and sol-gel methods, respectively. The inorganic shell thickness of hollow polymer@silica microspheres can be adjusted from 15 nm to 33 nm by the self-assembled layers in the LBL method and from 15 nm to 63 nm by the dosage of precursor in the sol-gel method. Compared to the LBL method, the hollow polymer@silica microspheres prepared via the sol-gel method have a uniform and dense inorganic shell, thus ensuring the complete spherical morphology of the microspheres after calcination, even if the inorganic shell thickness is only 15 nm. Moreover, the hollow polymer@silica microspheres prepared via the sol-gel method exhibit improved compression resistance and good opacity, remaining intact at 16,000 psi and providing the corresponding coating with transmittance lower than 35.1%. This work highlights the morphology regulation of microspheres prepared by different methods and provides useful insights for the design of composites microspheres with controllable structures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信