Qiong Zhao, Ke Zhou, Fengfeng Zhang, Yu Wang, Jun Hao, Fengxing Xie, Qian Yang
{"title":"Relations Between Core Taxa and Metabolic Characteristics of Bacterial Communities in <i>Litopenaeus vannamei</i> Ponds and Their Probiotic Potential.","authors":"Qiong Zhao, Ke Zhou, Fengfeng Zhang, Yu Wang, Jun Hao, Fengxing Xie, Qian Yang","doi":"10.3390/microorganisms13020466","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms play a crucial role in purifying aquaculture water bodies. However, there is limited understanding regarding the core species of bacterial communities in aquaculture ponds and their metabolic functions. Using 16S rRNA gene sequencing technology, network analysis, and Biolog EcoPlates, we identified keystone and core taxa of bacterial communities in <i>Litopenaeus vannamei</i> ponds and investigated their correlations with their community's carbon source utilization abilities based on Biolog EcoPlates. We found that keystone and core taxa in bacterial communities were significantly correlated with the carbon source utilization abilities of bacterial communities. The positively correlated core taxa include (1) <i>Bacillus</i>, <i>Flavobacterium</i>, <i>Brevibacillus</i>, and <i>Paenibacillus</i>, which are used as probiotics in aquaculture, and (2) <i>Candidatus</i> Aquiluna, <i>Dechloromonas</i>, <i>Sulfurifustis</i>, <i>Terrimicrobium</i>, <i>Alsobacter</i>, and <i>Gemmobacter</i>, which have been reported to play a role in nitrogen removal. Furthermore, the positively correlated <i>Tropicimonas</i> (Rhodobacterales: Rhodobacteraceae) in aquaculture has not yet been applied. By nitrogen degradation experiments in aquaculture wastewater, we confirmed the synergistic relationship between the genera <i>Tropicimonas</i> and <i>Bacillus</i>. The co-introduction of <i>Tropicimonas sediminicola</i> SDUM182003 and <i>Priestia aryabhattai</i> HG1802 or <i>Bacillus subtilis</i> XQ1804 into the aquaculture tailwater reduced the time required for the removal rates of nitrite nitrogen and nitrate nitrogen to reach over 90% by 24-48 h. Our research reveals the correlation between core taxa and community carbon source utilization, indicating that the core taxa of bacterial communities play a crucial role in the metabolic functions of the community, and offering a reference for exploring new bacterial genera with probiotic potential.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 2","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858629/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13020466","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microorganisms play a crucial role in purifying aquaculture water bodies. However, there is limited understanding regarding the core species of bacterial communities in aquaculture ponds and their metabolic functions. Using 16S rRNA gene sequencing technology, network analysis, and Biolog EcoPlates, we identified keystone and core taxa of bacterial communities in Litopenaeus vannamei ponds and investigated their correlations with their community's carbon source utilization abilities based on Biolog EcoPlates. We found that keystone and core taxa in bacterial communities were significantly correlated with the carbon source utilization abilities of bacterial communities. The positively correlated core taxa include (1) Bacillus, Flavobacterium, Brevibacillus, and Paenibacillus, which are used as probiotics in aquaculture, and (2) Candidatus Aquiluna, Dechloromonas, Sulfurifustis, Terrimicrobium, Alsobacter, and Gemmobacter, which have been reported to play a role in nitrogen removal. Furthermore, the positively correlated Tropicimonas (Rhodobacterales: Rhodobacteraceae) in aquaculture has not yet been applied. By nitrogen degradation experiments in aquaculture wastewater, we confirmed the synergistic relationship between the genera Tropicimonas and Bacillus. The co-introduction of Tropicimonas sediminicola SDUM182003 and Priestia aryabhattai HG1802 or Bacillus subtilis XQ1804 into the aquaculture tailwater reduced the time required for the removal rates of nitrite nitrogen and nitrate nitrogen to reach over 90% by 24-48 h. Our research reveals the correlation between core taxa and community carbon source utilization, indicating that the core taxa of bacterial communities play a crucial role in the metabolic functions of the community, and offering a reference for exploring new bacterial genera with probiotic potential.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.