Francisco J Flores, Esteban Mena, Silvana Granda, Jéssica Duchicela
{"title":"Microbial Community Composition of Explosive-Contaminated Soils: A Metataxonomic Analysis.","authors":"Francisco J Flores, Esteban Mena, Silvana Granda, Jéssica Duchicela","doi":"10.3390/microorganisms13020453","DOIUrl":null,"url":null,"abstract":"<p><p>Munition disposal practices have significant effects on microbial composition and overall soil health. Explosive soil contamination can disrupt microbial communities, leading to microbial abundance and richness changes. This study investigates the microbial diversity of soils and roots from sites with a history of ammunition disposal, aiming to identify organisms that may play a role in bioremediation. Soil and root samples were collected from two types of ammunition disposal (through open burning and open detonation) and unpolluted sites in Machachi, Ecuador, over two years (2022 and 2023). High-throughput sequencing of the 16S rRNA gene (for bacteria) and the ITS region (for fungi and plants) was conducted to obtain taxonomic profiles. There were significant variations in the composition of bacteria, fungi, and plant communities between polluted and unpolluted sites. Bacterial genera such as <i>Pseudarthrobacter</i>, <i>Pseudomonas</i>, and <i>Rhizobium</i> were more abundant in roots, while <i>Candidatus Udaeobacter</i> dominated unpolluted soils. Fungal classes Dothideomycetes and Sordariomycetes were prevalent across most samples, while Leotiomycetes and Agaricomycetes were also highly abundant in unpolluted samples. Plant-associated reads showed a higher abundance of <i>Poa</i> and <i>Trifolium</i> in root samples, particularly at contaminated sites, and <i>Alchemilla</i>, <i>Vaccinium</i>, and <i>Hypericum</i> were abundant in unpolluted sites. Alpha diversity analysis indicated that bacterial diversity was significantly higher in unpolluted root and soil samples, whereas fungal diversity was not significantly different among sites. Redundancy analysis of beta diversity showed that site, year, and sample type significantly influenced microbial community structure, with the site being the most influential factor. Differentially abundant microbial taxa, including bacteria such as <i>Pseudarthrobacter</i> and fungi such as <i>Paraleptosphaeria</i> and <i>Talaromyces</i>, may contribute to natural attenuation processes in explosive-contaminated soils. This research highlights the potential of certain microbial taxa to restore environments contaminated by explosives.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 2","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13020453","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Munition disposal practices have significant effects on microbial composition and overall soil health. Explosive soil contamination can disrupt microbial communities, leading to microbial abundance and richness changes. This study investigates the microbial diversity of soils and roots from sites with a history of ammunition disposal, aiming to identify organisms that may play a role in bioremediation. Soil and root samples were collected from two types of ammunition disposal (through open burning and open detonation) and unpolluted sites in Machachi, Ecuador, over two years (2022 and 2023). High-throughput sequencing of the 16S rRNA gene (for bacteria) and the ITS region (for fungi and plants) was conducted to obtain taxonomic profiles. There were significant variations in the composition of bacteria, fungi, and plant communities between polluted and unpolluted sites. Bacterial genera such as Pseudarthrobacter, Pseudomonas, and Rhizobium were more abundant in roots, while Candidatus Udaeobacter dominated unpolluted soils. Fungal classes Dothideomycetes and Sordariomycetes were prevalent across most samples, while Leotiomycetes and Agaricomycetes were also highly abundant in unpolluted samples. Plant-associated reads showed a higher abundance of Poa and Trifolium in root samples, particularly at contaminated sites, and Alchemilla, Vaccinium, and Hypericum were abundant in unpolluted sites. Alpha diversity analysis indicated that bacterial diversity was significantly higher in unpolluted root and soil samples, whereas fungal diversity was not significantly different among sites. Redundancy analysis of beta diversity showed that site, year, and sample type significantly influenced microbial community structure, with the site being the most influential factor. Differentially abundant microbial taxa, including bacteria such as Pseudarthrobacter and fungi such as Paraleptosphaeria and Talaromyces, may contribute to natural attenuation processes in explosive-contaminated soils. This research highlights the potential of certain microbial taxa to restore environments contaminated by explosives.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.