Chemical Composition, Enantiomeric Distribution and Antimicrobial, Antioxidant and Antienzymatic Activities of Essential Oil from Leaves of Citrus x limonia.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Eduardo Valarezo, Laura Toledo-Ruiz, Wolter Coque-Saetama, Alfredo Caraguay-Martínez, Ximena Jaramillo-Fierro, Nixon Cumbicus, Miguel Angel Meneses
{"title":"Chemical Composition, Enantiomeric Distribution and Antimicrobial, Antioxidant and Antienzymatic Activities of Essential Oil from Leaves of <i>Citrus</i> x <i>limonia</i>.","authors":"Eduardo Valarezo, Laura Toledo-Ruiz, Wolter Coque-Saetama, Alfredo Caraguay-Martínez, Ximena Jaramillo-Fierro, Nixon Cumbicus, Miguel Angel Meneses","doi":"10.3390/molecules30040937","DOIUrl":null,"url":null,"abstract":"<p><p><i>Citrus</i> x <i>limonia</i> is an aromatic species belonging to the Rutaceae family. In the present study, the chemical composition, enantiomeric distribution, and biological activity of the essential oil isolated from leaves of <i>Citrus</i> x <i>limonia</i> were determined. The essential oil was extracted through hydrodistillation. The chemical composition of the essential oil was determined by gas chromatography (GC) coupled to a flame ionization detector (GC-FID), and a mass spectrometer detector (GC-MS) using a nonpolar column. The enantiomeric distribution was performed using two enantioselective chromatographic columns. Antimicrobial activity was determined using the broth microdilution method. The antimicrobial activity was tested against eight bacteria and two fungi. The antioxidant activity was determined through ABTS and DPPH methods. The spectrophotometric method was used to determine anticholinesterase activity. In the essential oil, forty-three compounds were identified. These compounds represent 99.13% of the total composition. Monoterpene hydrocarbons were the most representative group in number of compounds (fourteen) and in terms of relative abundance (65.67%). The main constituent is found to be limonene (25.37 ± 0.80%), <i>β</i>-pinene (23.29 ± 0.15%) and sabinene (8.35 ± 0.10%). Six pairs of enantiomers were identified in the essential oil from fruits of <i>Citrus</i> x <i>limonia</i>. The essential oil showed moderate antibacterial activity against Gram-positive cocci <i>Enterococcus faecalis,</i> and Gram-positive bacillus <i>Lysteria monocytogenes</i> with a MIC of 1000 μg/mL. The oil exhibited strong antifungal activity against fungi <i>Aspergillus niger</i>, and yeasts <i>Candida albicans</i> with a MIC of 250 and 500 μg/mL, respectively. The antioxidant activity of essential oil was weak in ABTS method with a SC<sub>50</sub> of 9.12 mg/mL. Additionally, the essential oil presented moderate anticholinesterase activity with an IC<sub>50</sub> of 71.02 ± 1.02 µg/mL.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30040937","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Citrus x limonia is an aromatic species belonging to the Rutaceae family. In the present study, the chemical composition, enantiomeric distribution, and biological activity of the essential oil isolated from leaves of Citrus x limonia were determined. The essential oil was extracted through hydrodistillation. The chemical composition of the essential oil was determined by gas chromatography (GC) coupled to a flame ionization detector (GC-FID), and a mass spectrometer detector (GC-MS) using a nonpolar column. The enantiomeric distribution was performed using two enantioselective chromatographic columns. Antimicrobial activity was determined using the broth microdilution method. The antimicrobial activity was tested against eight bacteria and two fungi. The antioxidant activity was determined through ABTS and DPPH methods. The spectrophotometric method was used to determine anticholinesterase activity. In the essential oil, forty-three compounds were identified. These compounds represent 99.13% of the total composition. Monoterpene hydrocarbons were the most representative group in number of compounds (fourteen) and in terms of relative abundance (65.67%). The main constituent is found to be limonene (25.37 ± 0.80%), β-pinene (23.29 ± 0.15%) and sabinene (8.35 ± 0.10%). Six pairs of enantiomers were identified in the essential oil from fruits of Citrus x limonia. The essential oil showed moderate antibacterial activity against Gram-positive cocci Enterococcus faecalis, and Gram-positive bacillus Lysteria monocytogenes with a MIC of 1000 μg/mL. The oil exhibited strong antifungal activity against fungi Aspergillus niger, and yeasts Candida albicans with a MIC of 250 and 500 μg/mL, respectively. The antioxidant activity of essential oil was weak in ABTS method with a SC50 of 9.12 mg/mL. Additionally, the essential oil presented moderate anticholinesterase activity with an IC50 of 71.02 ± 1.02 µg/mL.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信