Genomics-Driven Discovery of Plantariitin A, a New Lipopeptide in Burkholderia plantarii DSM9509.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiuling Wang, Zhuo Zhang, Jun Fu, Ruijuan Li
{"title":"Genomics-Driven Discovery of Plantariitin A, a New Lipopeptide in <i>Burkholderia plantarii</i> DSM9509.","authors":"Xiuling Wang, Zhuo Zhang, Jun Fu, Ruijuan Li","doi":"10.3390/molecules30040868","DOIUrl":null,"url":null,"abstract":"<p><p>A significant number of silent biosynthetic gene clusters (BGCs) within the <i>Burkholderia</i> genome remain uncharacterized, representing a valuable opportunity for the discovery of new natural products. In this research, the recombineering system ETh1h2e_yi23, which facilitates recombination in <i>Burkholderia</i> and was developed in our previous study, was used for mining the BGCs of <i>B. plantarii</i> DSM9509. By using this recombineering system, the constitutive promoter was precisely inserted into the genome, resulting in the activation of the silent <i>pla</i> BGC, which led to the production of a new lipopeptide named plantariitin A. A distinctive characteristic of this lipopeptide is the incorporation of a non-proteinogenic amino acid residue, i.e., amino-1,2,3,6-tetrahydro-2,6-dioxo-4-pyrimidinepropanoic acid (ATDPP), which has not been identified in other natural products. A biological activity assay demonstrated that plantariitin A exhibits anti-inflammatory activity. This study further substantiates the notion that the in situ activation of silent BGCs is a crucial strategy for the discovery of new natural products within the genus <i>Burkholderia</i>. With the increasing availability of genomic data and the development of bioinformatics tools, <i>Burkholderia</i> is poised to emerge as a prominent source for the development of new lipopeptides.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30040868","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A significant number of silent biosynthetic gene clusters (BGCs) within the Burkholderia genome remain uncharacterized, representing a valuable opportunity for the discovery of new natural products. In this research, the recombineering system ETh1h2e_yi23, which facilitates recombination in Burkholderia and was developed in our previous study, was used for mining the BGCs of B. plantarii DSM9509. By using this recombineering system, the constitutive promoter was precisely inserted into the genome, resulting in the activation of the silent pla BGC, which led to the production of a new lipopeptide named plantariitin A. A distinctive characteristic of this lipopeptide is the incorporation of a non-proteinogenic amino acid residue, i.e., amino-1,2,3,6-tetrahydro-2,6-dioxo-4-pyrimidinepropanoic acid (ATDPP), which has not been identified in other natural products. A biological activity assay demonstrated that plantariitin A exhibits anti-inflammatory activity. This study further substantiates the notion that the in situ activation of silent BGCs is a crucial strategy for the discovery of new natural products within the genus Burkholderia. With the increasing availability of genomic data and the development of bioinformatics tools, Burkholderia is poised to emerge as a prominent source for the development of new lipopeptides.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信