Haixin Gao, Qiang Fang, Yanfen Bai, Chunyue Hu, Howard H Chou
{"title":"Biosynthesis of 12-aminododecanoic acid from biomass sugars.","authors":"Haixin Gao, Qiang Fang, Yanfen Bai, Chunyue Hu, Howard H Chou","doi":"10.1016/j.ymben.2025.02.010","DOIUrl":null,"url":null,"abstract":"<p><p>Biosynthesis of 12-aminododecanoic acid (ADDA) directly from biomass-derived sugars would enable a more sustainable process for manufacturing the engineering polymer Nylon 12. ADDA biosynthesis is currently hindered by the cytotoxicity of dodecanoic acid (DDA) to growing cells, and the accumulation of the overoxidized byproduct dodecanedioic acid (DDDA). In this study, these challenges were addressed by engineering an autoinducible system to better control in vivo DDA synthesis without impacting growth, and deleting aldehyde dehydrogenases and oxidases to reduce DDDA accumulation. As a result, a one-step fermentation process was established to synthesize ADDA from glucose and cellobiose. Finally, batch fermentation achieved 1035 mg/L ADDA and 5% yield, which is the highest titer and yield accomplished directly from sugar to date. This research contributes to the mechanistic understanding of microbial DDA, ADDA, and DDDA synthesis, as well as the goal of developing more sustainable processes for nylon production.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2025.02.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biosynthesis of 12-aminododecanoic acid (ADDA) directly from biomass-derived sugars would enable a more sustainable process for manufacturing the engineering polymer Nylon 12. ADDA biosynthesis is currently hindered by the cytotoxicity of dodecanoic acid (DDA) to growing cells, and the accumulation of the overoxidized byproduct dodecanedioic acid (DDDA). In this study, these challenges were addressed by engineering an autoinducible system to better control in vivo DDA synthesis without impacting growth, and deleting aldehyde dehydrogenases and oxidases to reduce DDDA accumulation. As a result, a one-step fermentation process was established to synthesize ADDA from glucose and cellobiose. Finally, batch fermentation achieved 1035 mg/L ADDA and 5% yield, which is the highest titer and yield accomplished directly from sugar to date. This research contributes to the mechanistic understanding of microbial DDA, ADDA, and DDDA synthesis, as well as the goal of developing more sustainable processes for nylon production.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.