Exploring Quinoline Derivatives: Their Antimalarial Efficacy and Structural Features.

IF 1.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Raghav Mishra, Jayze da Cunha Xavier, Nitin Kumar, Gaurav Krishna, Prashant Kumar Dhakad, Helcio Silva Dos Santos, Paulo Nogueira Bandeira, Tigressa Helena Soares Rodrigues, Diego Romao Gondim, Walber Henrique Ferreira Ribeiro, Draulio Sales da Silva, Alexandre Magno Rodrigues Teixeira, Wandresa Francelino Pereira, Emmanuel Silva Marinho, Sucheta
{"title":"Exploring Quinoline Derivatives: Their Antimalarial Efficacy and Structural Features.","authors":"Raghav Mishra, Jayze da Cunha Xavier, Nitin Kumar, Gaurav Krishna, Prashant Kumar Dhakad, Helcio Silva Dos Santos, Paulo Nogueira Bandeira, Tigressa Helena Soares Rodrigues, Diego Romao Gondim, Walber Henrique Ferreira Ribeiro, Draulio Sales da Silva, Alexandre Magno Rodrigues Teixeira, Wandresa Francelino Pereira, Emmanuel Silva Marinho, Sucheta","doi":"10.2174/0115734064318361240827072124","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Malaria continues to be the primary cause of mortality worldwide, and timely recognition and prompt intervention are crucial in mitigating adverse consequences. This review article aims to examine the effectiveness and structural characteristics of quinoline-based compounds as antimalarial agents. It specifically focuses on their therapeutic effects as well as potential prospects for exploring structure-activity relationship (SAR). In addition, this study aims to identify lead compounds that can efficiently battle multidrug-resistant forms of <i>Plasmodium falciparum </i> and <i>Plasmodium vivax</i>.</p><p><strong>Methods: </strong>A comprehensive review was conducted to evaluate the effectiveness of quinoline-based antimalarial medications in eradicating <i>P. falciparum</i> and <i>P. vivax</i>. The mechanism of action and SAR of these compounds were analyzed.</p><p><strong>Results: </strong>Quinoline-based antimalarials demonstrated significant effectiveness in eliminating <i>P. falciparum</i> parasites, particularly in regions severely impacted by malaria, including Africa and Asia. These compounds were found to exhibit tolerance and immune-modulating properties, indicating their potential for more widespread utilization. The investigation identified various new quinoline compounds with improved antimalarial activity, including metal-chloroquine complexes, diaminealkyne chloroquines, and cinnamoylated chloroquine hybrids. This study explored different mechanisms by which these compounds interact with parasites, including their ability to accumulate in the parasite's acidic food vacuoles and disrupt heme detoxification. The derivatives demonstrated strong efficacy against chloroquine-resistant strains and yielded positive results.</p><p><strong>Conclusion: </strong>Quinoline-based compounds represent a promising avenue for combating malaria due to their demonstrated efficacy against <i>P. falciparum</i> and <i>P. vivax</i> parasites. Further research on their mechanisms of action and SAR could lead to the development of more effective antimalarial medications.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":"21 2","pages":"96-121"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064318361240827072124","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Malaria continues to be the primary cause of mortality worldwide, and timely recognition and prompt intervention are crucial in mitigating adverse consequences. This review article aims to examine the effectiveness and structural characteristics of quinoline-based compounds as antimalarial agents. It specifically focuses on their therapeutic effects as well as potential prospects for exploring structure-activity relationship (SAR). In addition, this study aims to identify lead compounds that can efficiently battle multidrug-resistant forms of Plasmodium falciparum and Plasmodium vivax.

Methods: A comprehensive review was conducted to evaluate the effectiveness of quinoline-based antimalarial medications in eradicating P. falciparum and P. vivax. The mechanism of action and SAR of these compounds were analyzed.

Results: Quinoline-based antimalarials demonstrated significant effectiveness in eliminating P. falciparum parasites, particularly in regions severely impacted by malaria, including Africa and Asia. These compounds were found to exhibit tolerance and immune-modulating properties, indicating their potential for more widespread utilization. The investigation identified various new quinoline compounds with improved antimalarial activity, including metal-chloroquine complexes, diaminealkyne chloroquines, and cinnamoylated chloroquine hybrids. This study explored different mechanisms by which these compounds interact with parasites, including their ability to accumulate in the parasite's acidic food vacuoles and disrupt heme detoxification. The derivatives demonstrated strong efficacy against chloroquine-resistant strains and yielded positive results.

Conclusion: Quinoline-based compounds represent a promising avenue for combating malaria due to their demonstrated efficacy against P. falciparum and P. vivax parasites. Further research on their mechanisms of action and SAR could lead to the development of more effective antimalarial medications.

喹啉衍生物的抗疟功效及结构特征研究。
目标:疟疾仍然是全世界死亡的主要原因,及时认识和迅速干预对减轻不良后果至关重要。本文综述了喹啉类抗疟药物的有效性和结构特点。特别着重于它们的治疗效果以及探索构效关系(SAR)的潜在前景。此外,本研究旨在鉴定能够有效对抗多重耐药形式的恶性疟原虫和间日疟原虫的先导化合物。方法:对喹诺林类抗疟药物在根除恶性疟原虫和间日疟原虫中的效果进行综合评价。分析了这些化合物的作用机理和合成孔径(SAR)。结果:以喹啉为基础的抗疟药物在消除恶性疟原虫方面显示出显著的有效性,特别是在疟疾严重影响的地区,包括非洲和亚洲。这些化合物被发现具有耐受性和免疫调节特性,表明它们具有更广泛应用的潜力。该研究发现了多种新的喹啉化合物,它们具有更好的抗疟活性,包括金属-氯喹配合物、二胺炔氯喹和肉桂化氯喹杂化物。这项研究探索了这些化合物与寄生虫相互作用的不同机制,包括它们在寄生虫的酸性食物液泡中积累和破坏血红素解毒的能力。该衍生物对氯喹耐药菌株具有较强的药效,并取得了阳性结果。结论:喹啉类化合物具有抗恶性疟原虫和间日疟原虫的功效,是一种很有前途的抗疟疾药物。对其作用机制和SAR的进一步研究将有助于开发更有效的抗疟药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信