Design and Synthesis of 3-(Phenylsulfonamido)benzamide Derivatives as Potent Carbonic Anhydrase IX Inhibitors: Biological Evaluations and Molecular Modeling Studies.

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL
Mohammad A Khanfar, Mohammad Saleh
{"title":"Design and Synthesis of 3-(Phenylsulfonamido)benzamide Derivatives as Potent Carbonic Anhydrase IX Inhibitors: Biological Evaluations and Molecular Modeling Studies.","authors":"Mohammad A Khanfar, Mohammad Saleh","doi":"10.2174/0115734064325144240823073504","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Carbonic anhydrase IX (CAIX) is known to be overexpressed in various tumors and plays a significant role in tumor development and progression.</p><p><strong>Methods: </strong>A series of 3-(benzylsulfonamido)benzamides derivatives was synthesized and tested for their CAIX inhibitory activities. The two most active compounds were subjected to cytotoxicity testing against a panel of 60 cancer cell lines.</p><p><strong>Results: </strong>Many of the synthesized compounds successfully inhibited CAIX activities, exhibiting IC<sub>50</sub> values in the low nanomolar range. The most potent CAIX inhibitor was compound 14, with an IC<sub>50</sub> of 140 nM. Structure-activity relationship analysis of the synthesized compounds supported with molecular docking revealed strong coordination of sulfonamide moiety with the catalytic Zn<sup>2+</sup> metal, hydrophobic interactions of the benzylsulfonamido ring with a hydrophobic pocket, and π- stacking interactions of the aryl ring with an aromatic surface. The two most active analogues (10 and 14) were further tested for their antiproliferative activities in the NCI-60 human tumor cell lines. Notably, compound 14 demonstrated potent growth inhibitory effects against several cancer cell lines.</p><p><strong>Conclusion: </strong>The synthesized analogues represent a novel scaffold for the treatment of different types of cancer by targeting CAIX.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":"21 2","pages":"160-167"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064325144240823073504","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Carbonic anhydrase IX (CAIX) is known to be overexpressed in various tumors and plays a significant role in tumor development and progression.

Methods: A series of 3-(benzylsulfonamido)benzamides derivatives was synthesized and tested for their CAIX inhibitory activities. The two most active compounds were subjected to cytotoxicity testing against a panel of 60 cancer cell lines.

Results: Many of the synthesized compounds successfully inhibited CAIX activities, exhibiting IC50 values in the low nanomolar range. The most potent CAIX inhibitor was compound 14, with an IC50 of 140 nM. Structure-activity relationship analysis of the synthesized compounds supported with molecular docking revealed strong coordination of sulfonamide moiety with the catalytic Zn2+ metal, hydrophobic interactions of the benzylsulfonamido ring with a hydrophobic pocket, and π- stacking interactions of the aryl ring with an aromatic surface. The two most active analogues (10 and 14) were further tested for their antiproliferative activities in the NCI-60 human tumor cell lines. Notably, compound 14 demonstrated potent growth inhibitory effects against several cancer cell lines.

Conclusion: The synthesized analogues represent a novel scaffold for the treatment of different types of cancer by targeting CAIX.

作为碳酸酐酶IX抑制剂的3-(苯磺胺)苯酰胺衍生物的设计和合成:生物学评价和分子模拟研究。
碳酸酐酶IX (carbon anhydrase IX, CAIX)已知在多种肿瘤中过表达,在肿瘤的发生发展中起重要作用。方法:合成一系列3-(苄基磺胺)苯酰胺衍生物,并对其CAIX抑制活性进行测定。两种最有效的化合物对60种癌细胞进行了细胞毒性测试。结果:许多合成的化合物成功地抑制了CAIX活性,IC50值在低纳摩尔范围内。最有效的CAIX抑制剂是化合物14,IC50为140 nM。通过分子对接对合成的化合物进行构效关系分析,发现磺酰胺部分与催化Zn2+金属具有较强的配位性,苯基磺酰胺环与疏水袋具有疏水相互作用,芳基环与芳表面具有π-堆叠相互作用。两种最活跃的类似物(10和14)在NCI-60人肿瘤细胞系中进一步测试了它们的抗增殖活性。值得注意的是,化合物14显示出对几种癌细胞系的有效生长抑制作用。结论:合成的类似物是一种靶向CAIX治疗不同类型癌症的新型支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信