What makes a competent aquatic invader? Considering saline niches of invertebrates and ray-finned fishes.

IF 2.8 2区 生物学 Q2 BIOLOGY
Journal of Experimental Biology Pub Date : 2025-03-01 Epub Date: 2025-02-26 DOI:10.1242/jeb.249515
Carolina A Freire
{"title":"What makes a competent aquatic invader? Considering saline niches of invertebrates and ray-finned fishes.","authors":"Carolina A Freire","doi":"10.1242/jeb.249515","DOIUrl":null,"url":null,"abstract":"<p><p>Aquatic invasive species are of growing concern globally, especially in fresh water. The problem is intensified by climate change, which often causes salinization of coastal fresh waters. Animals deal with salinity through the function of osmoregulation, and osmoregulatory ability can be informative when considering invasive potential. A species is said to be 'euryhaline' if it can tolerate a wide range of salinities, either through osmoregulation (tightly controlling its extracellular fluid osmolality) or osmoconformation (matching the osmotic concentration of its internal fluids with that of the environment). Euryhaline animals display a large fundamental saline niche (FSN); i.e. a wide physiological tolerance of salinity change. However, the range of salinities of the habitats where a species actually occurs define its realized saline niche (RSN). Importantly, aquatic species living in stable habitats (i.e. those with little variation in salinity) will have a small RSN, but may have large FSNs, depending on their evolutionary history. Species with large FSNs are more likely to be successful invaders of new habitats with different salinities. Here, I propose the term 'osmotic comfort' as a concept that is associated with the FSN. The core of the FSN corresponds to ∼100% osmotic comfort, or 'optimum salinity', putatively meaning minimum stress. Physiological markers of osmotic comfort can provide raw data for mechanistic niche modelling in aquatic habitats. A species with a larger FSN is more likely to remain 'osmotically comfortable' in a different saline habitat, and is less likely to suffer local extinction in fresh waters, for example, that undergo salinization.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249515","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aquatic invasive species are of growing concern globally, especially in fresh water. The problem is intensified by climate change, which often causes salinization of coastal fresh waters. Animals deal with salinity through the function of osmoregulation, and osmoregulatory ability can be informative when considering invasive potential. A species is said to be 'euryhaline' if it can tolerate a wide range of salinities, either through osmoregulation (tightly controlling its extracellular fluid osmolality) or osmoconformation (matching the osmotic concentration of its internal fluids with that of the environment). Euryhaline animals display a large fundamental saline niche (FSN); i.e. a wide physiological tolerance of salinity change. However, the range of salinities of the habitats where a species actually occurs define its realized saline niche (RSN). Importantly, aquatic species living in stable habitats (i.e. those with little variation in salinity) will have a small RSN, but may have large FSNs, depending on their evolutionary history. Species with large FSNs are more likely to be successful invaders of new habitats with different salinities. Here, I propose the term 'osmotic comfort' as a concept that is associated with the FSN. The core of the FSN corresponds to ∼100% osmotic comfort, or 'optimum salinity', putatively meaning minimum stress. Physiological markers of osmotic comfort can provide raw data for mechanistic niche modelling in aquatic habitats. A species with a larger FSN is more likely to remain 'osmotically comfortable' in a different saline habitat, and is less likely to suffer local extinction in fresh waters, for example, that undergo salinization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信