A Cftr-independent, Ano1-rich seawater-adaptive ionocyte in sea lamprey gills.

IF 2.8 2区 生物学 Q2 BIOLOGY
Journal of Experimental Biology Pub Date : 2025-04-01 Epub Date: 2025-04-02 DOI:10.1242/jeb.250110
Ciaran A Shaughnessy, Daniel J Hall, Jessica L Norstog, Andre Barany, Amy M Regish, Diogo Ferreira-Martins, Jason P Breves, Lisa M Komoroske, Stephen D McCormick
{"title":"A Cftr-independent, Ano1-rich seawater-adaptive ionocyte in sea lamprey gills.","authors":"Ciaran A Shaughnessy, Daniel J Hall, Jessica L Norstog, Andre Barany, Amy M Regish, Diogo Ferreira-Martins, Jason P Breves, Lisa M Komoroske, Stephen D McCormick","doi":"10.1242/jeb.250110","DOIUrl":null,"url":null,"abstract":"<p><p>All ionoregulating marine fishes examined to date utilize seawater-type ionocytes expressing the apical Cl- channel, cystic fibrosis transmembrane conductance regulator (Cftr) to secrete Cl-. We performed transcriptomic, molecular and functional studies to identify Cl- transporters in the seawater-type ionocytes of sea lamprey (Petromyzon marinus). Gill cftr expression was minimal or undetectable in larvae and post-metamorphic juveniles. We identified other Cl- transporters highly expressed in the gills and/or upregulated following metamorphosis and further investigated two candidates that stood out in our analysis, a Ca2+-activated Cl- channel, anoctamin 1 (ano1), and the Clc chloride channel family member 2 (clcn2). Of these, ano1 was expressed 10-100 times more than clcn2 in the gills; moreover, ano1 was upregulated during seawater acclimation, while clcn2 was not. Using an antibody raised against sea lamprey Ano1, we did not detect Ano1 in the gills of larvae, found elevated levels in juveniles and observed a 4-fold increase in juveniles after seawater acclimation. Ano1 was localized to seawater-type branchial ionocytes but, surprisingly, was localized to the basolateral membrane. In vivo pharmacological inhibition experiments demonstrated that a DIDS-sensitive mechanism was critical to the maintenance of osmoregulatory homeostasis in seawater- but not freshwater-acclimated sea lamprey. Taken together, our results provide evidence of a Cftr-independent mechanism for branchial Cl- secretion in sea lamprey that leverages Ano1-expressing ionocytes. Once further characterized, the Cftr-independent, Ano1-rich ionocytes of sea lamprey could reveal novel strategies for branchial Cl- secretion, whether by Ano1 or some other Cl- transporter, not previously known in ionoregulating marine organisms.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11993260/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.250110","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

All ionoregulating marine fishes examined to date utilize seawater-type ionocytes expressing the apical Cl- channel, cystic fibrosis transmembrane conductance regulator (Cftr) to secrete Cl-. We performed transcriptomic, molecular and functional studies to identify Cl- transporters in the seawater-type ionocytes of sea lamprey (Petromyzon marinus). Gill cftr expression was minimal or undetectable in larvae and post-metamorphic juveniles. We identified other Cl- transporters highly expressed in the gills and/or upregulated following metamorphosis and further investigated two candidates that stood out in our analysis, a Ca2+-activated Cl- channel, anoctamin 1 (ano1), and the Clc chloride channel family member 2 (clcn2). Of these, ano1 was expressed 10-100 times more than clcn2 in the gills; moreover, ano1 was upregulated during seawater acclimation, while clcn2 was not. Using an antibody raised against sea lamprey Ano1, we did not detect Ano1 in the gills of larvae, found elevated levels in juveniles and observed a 4-fold increase in juveniles after seawater acclimation. Ano1 was localized to seawater-type branchial ionocytes but, surprisingly, was localized to the basolateral membrane. In vivo pharmacological inhibition experiments demonstrated that a DIDS-sensitive mechanism was critical to the maintenance of osmoregulatory homeostasis in seawater- but not freshwater-acclimated sea lamprey. Taken together, our results provide evidence of a Cftr-independent mechanism for branchial Cl- secretion in sea lamprey that leverages Ano1-expressing ionocytes. Once further characterized, the Cftr-independent, Ano1-rich ionocytes of sea lamprey could reveal novel strategies for branchial Cl- secretion, whether by Ano1 or some other Cl- transporter, not previously known in ionoregulating marine organisms.

七鳃鳗鳃中一种不依赖cftr、富ano1的海水适应离子细胞。
迄今为止研究的所有具有离子调节功能的海洋鱼类都利用海水型离子细胞表达顶端Cl-通道,囊性纤维化跨膜传导调节剂(Cftr)来分泌Cl-。我们进行了转录组学、分子和功能研究,以鉴定海七鳃鳗(Petromyzon marinus)海水型离子细胞中的Cl-转运体。鳃cftr的表达在幼虫和变质后的幼鱼中很少或检测不到。我们确定了其他在鳃中高度表达和/或在变形后上调的Cl-转运蛋白,并进一步研究了在我们的分析中突出的两个候选蛋白,Ca2+激活的Cl-通道,ano1 (ano1)和Clc氯离子通道家族成员2 (clcn2)。其中,ano1在鳃中的表达量是clcn2的10-100倍;此外,在海水驯化过程中,ano1表达上调,而clcn2不上调。使用一种针对海洋七鳃鳗的Ano1抗体,我们没有在幼虫的鳃中检测到Ano1,但在幼鱼中发现Ano1水平升高,并且在海水驯化后幼鱼的Ano1水平增加了4倍。Ano1定位于海水型鳃离子细胞,但令人惊讶的是,它定位于基底外侧膜。体内药物抑制实验表明,dids敏感机制对维持海水渗透调节稳态至关重要,而不是淡水适应的七鳃鳗。综上所述,我们的研究结果为七鳃鳗鳃Cl-分泌的cftr独立机制提供了证据,该机制利用表达ano1的离子细胞。一旦进一步表征,海七鳃鳗不依赖cftr,富含Ano1的离子细胞可能揭示鳃分泌Cl-的新策略,无论是Ano1还是其他一些Cl-转运体,以前在离子调节海洋生物中未知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信