{"title":"Compartmental structure in the secondary lymphoid tissue can slow down <i>in vivo</i> HIV-1 evolution in the presence of strong CTL responses.","authors":"Wen-Jian Chung, Dominik Wodarz","doi":"10.1098/rsif.2024.0468","DOIUrl":null,"url":null,"abstract":"<p><p>Human immunodeficiency virus (HIV-1) replicates in the secondary lymphoid tissues, which are characterized by complex compartmental structures. While cytotoxic T lymphocytes (CTL) readily access infected cells in the extrafollicular compartments, they do not home to follicular compartments, which thus represent an immune-privileged site. Using mathematical models, previous work has shown that this compartmental tissue structure can delay the emergence of CTL escape mutants. Here, we show computationally that the compartmental structure can have an impact on the evolution of advantageous mutants that are not related to CTL recognition: (i) compartmental structure can influence the fixation probability of an advantageous mutant, with weakened selection occurring if CTL responses are of intermediate strength; (ii) compartmental structure is predicted to reduce the rate of mutant generation, which becomes more pronounced for stronger CTL responses; and (iii) compartmental structure is predicted to slow down the overall rate of mutant invasion, with the effect becoming more pronounced for stronger CTL responses. Altogether, this work shows that <i>in vivo</i> virus evolution proceeds slower in models with compartmental structure compared with models that assume equivalent virus load in the absence of compartmental structure, especially for strong CTL-mediated virus control. This has implications for understanding the rate of disease progression.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240468"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0468","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Human immunodeficiency virus (HIV-1) replicates in the secondary lymphoid tissues, which are characterized by complex compartmental structures. While cytotoxic T lymphocytes (CTL) readily access infected cells in the extrafollicular compartments, they do not home to follicular compartments, which thus represent an immune-privileged site. Using mathematical models, previous work has shown that this compartmental tissue structure can delay the emergence of CTL escape mutants. Here, we show computationally that the compartmental structure can have an impact on the evolution of advantageous mutants that are not related to CTL recognition: (i) compartmental structure can influence the fixation probability of an advantageous mutant, with weakened selection occurring if CTL responses are of intermediate strength; (ii) compartmental structure is predicted to reduce the rate of mutant generation, which becomes more pronounced for stronger CTL responses; and (iii) compartmental structure is predicted to slow down the overall rate of mutant invasion, with the effect becoming more pronounced for stronger CTL responses. Altogether, this work shows that in vivo virus evolution proceeds slower in models with compartmental structure compared with models that assume equivalent virus load in the absence of compartmental structure, especially for strong CTL-mediated virus control. This has implications for understanding the rate of disease progression.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.