Machine learning-based optimal design of fibrillar adhesives.

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-02-01 Epub Date: 2025-02-26 DOI:10.1098/rsif.2024.0636
Mohammad Shojaeifard, Matteo Ferraresso, Alessandro Lucantonio, Mattia Bacca
{"title":"Machine learning-based optimal design of fibrillar adhesives.","authors":"Mohammad Shojaeifard, Matteo Ferraresso, Alessandro Lucantonio, Mattia Bacca","doi":"10.1098/rsif.2024.0636","DOIUrl":null,"url":null,"abstract":"<p><p>Fibrillar adhesion, observed in animals like beetles, spiders and geckos, relies on nanoscopic or microscopic fibrils to enhance surface adhesion via 'contact splitting'. This concept has inspired engineering applications across robotics, transportation and medicine. Recent studies suggest that functional grading of fibril properties can improve adhesion, but this is a complex design challenge that has only been explored in simplified geometries. While machine learning (ML) has gained traction in adhesive design, no previous attempts have targeted fibril-array scale optimization. In this study, we propose an ML-based tool that optimizes the distribution of fibril compliance to maximize adhesive strength. Our tool, featuring two neural networks (NNs), recovers previous design results for simple geometries and introduces novel solutions for complex configurations. The predictor NN estimates adhesive strength based on random compliance distributions, while the designer NN optimizes compliance distribution to achieve maximum strength using gradient-based optimization. This method significantly reduces test error and accelerates the optimization process, offering a high-performance solution for designing fibrillar adhesives and micro-architected materials aimed at fracture resistance by achieving equal load sharing.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240636"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858785/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0636","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Fibrillar adhesion, observed in animals like beetles, spiders and geckos, relies on nanoscopic or microscopic fibrils to enhance surface adhesion via 'contact splitting'. This concept has inspired engineering applications across robotics, transportation and medicine. Recent studies suggest that functional grading of fibril properties can improve adhesion, but this is a complex design challenge that has only been explored in simplified geometries. While machine learning (ML) has gained traction in adhesive design, no previous attempts have targeted fibril-array scale optimization. In this study, we propose an ML-based tool that optimizes the distribution of fibril compliance to maximize adhesive strength. Our tool, featuring two neural networks (NNs), recovers previous design results for simple geometries and introduces novel solutions for complex configurations. The predictor NN estimates adhesive strength based on random compliance distributions, while the designer NN optimizes compliance distribution to achieve maximum strength using gradient-based optimization. This method significantly reduces test error and accelerates the optimization process, offering a high-performance solution for designing fibrillar adhesives and micro-architected materials aimed at fracture resistance by achieving equal load sharing.

基于机器学习的纤维粘接剂优化设计。
在甲虫、蜘蛛和壁虎等动物身上观察到的纤维粘附,依靠纳米级或微观纤维通过“接触分裂”来增强表面粘附。这一概念激发了机器人、交通和医学等领域的工程应用。最近的研究表明,纤维性能的功能分级可以改善附着力,但这是一个复杂的设计挑战,只在简化的几何形状中进行了探索。虽然机器学习(ML)在粘合剂设计中获得了牵引力,但之前没有针对纤维阵列规模优化的尝试。在这项研究中,我们提出了一种基于ml的工具,该工具可以优化纤维顺应性的分布,以最大限度地提高粘合强度。我们的工具具有两个神经网络(nn),可以恢复简单几何形状的先前设计结果,并为复杂配置引入新的解决方案。预测神经网络基于随机柔度分布估计粘接强度,而设计神经网络使用基于梯度的优化优化柔度分布以达到最大强度。该方法显著降低了测试误差,加速了优化过程,为设计纤维粘合剂和微结构材料提供了一种高性能解决方案,通过实现均匀的载荷分担来实现抗断裂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信