Paul S Bagus, Connie J Nelin, Michel Sassi, Daniel Baranowski, Marcus A Sharp, Tom Autrey, Zdenek Dohnálek, Zbynek Novotny
{"title":"The XPS of pyridine: A combined theoretical and experimental analysis.","authors":"Paul S Bagus, Connie J Nelin, Michel Sassi, Daniel Baranowski, Marcus A Sharp, Tom Autrey, Zdenek Dohnálek, Zbynek Novotny","doi":"10.1063/5.0249190","DOIUrl":null,"url":null,"abstract":"<p><p>A detailed analysis of the N(1s) and C(1s) X-Ray Photoelectron Spectroscopy (XPS) is made, where the measured XPS is compared with theoretical Sudden Approximation (SA) intensities and theoretical XPS Binding Energies (BEs). There is remarkably good agreement between the theoretical predictions and the measured XPS; in particular, the different full width at half maximum values for the C(1s) and N(1s) BEs are explained in terms of unresolved C(1s) BEs for the different C atoms in pyridine. This work demonstrates that the combination of theory and XPS measurements can extract analysis of the XPS relevant to the molecular electronic structure. The theory used is based on fully relativistic self-consistent field solutions of the Dirac-Coulomb Hamiltonian, and the SA is used to determine relative XPS intensities.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0249190","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A detailed analysis of the N(1s) and C(1s) X-Ray Photoelectron Spectroscopy (XPS) is made, where the measured XPS is compared with theoretical Sudden Approximation (SA) intensities and theoretical XPS Binding Energies (BEs). There is remarkably good agreement between the theoretical predictions and the measured XPS; in particular, the different full width at half maximum values for the C(1s) and N(1s) BEs are explained in terms of unresolved C(1s) BEs for the different C atoms in pyridine. This work demonstrates that the combination of theory and XPS measurements can extract analysis of the XPS relevant to the molecular electronic structure. The theory used is based on fully relativistic self-consistent field solutions of the Dirac-Coulomb Hamiltonian, and the SA is used to determine relative XPS intensities.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.