Multi-spectral laser speckle contrast imaging for depth-resolved blood perfusion assessment.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-02-01 Epub Date: 2025-02-25 DOI:10.1117/1.JBO.30.2.023517
Liban Hussein, Sajjad Moazeni
{"title":"Multi-spectral laser speckle contrast imaging for depth-resolved blood perfusion assessment.","authors":"Liban Hussein, Sajjad Moazeni","doi":"10.1117/1.JBO.30.2.023517","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Laser speckle contrast imaging (LSCI) is a widely used tool in biomedical imaging that leverages the interactions between coherent laser light and tissue to assess blood perfusion. Although effective for 2D imaging applications such as skin burn assessment and wound healing, conventional LSCI lacks depth-resolved capabilities, limiting its potential for deeper perfusion analysis. Enhancing LSCI for depth profiling would significantly expand its utility in applications such as vascular imaging and burn diagnostics.</p><p><strong>Aim: </strong>We investigate the use of multi-spectral laser speckle contrast imaging (MS-LSCI) for assessing blood perfusion at multiple depths, utilizing multiple laser wavelengths and advanced correlation techniques to improve depth localization.</p><p><strong>Approach: </strong>Two tissue phantom molds were fabricated to simulate blood vessels at varying depths. Laser wavelengths from blue to near-infrared (NIR) were used to perform controlled experiments. The visibility parameter, <math> <mrow><msub><mi>V</mi> <mi>r</mi></msub> </mrow> </math> , was employed to correlate and estimate the depth between the phantoms. In addition, a spectral wavelength mapping technique was implemented to enhance signal quality. Validation was conducted by imaging a human hand using the MS-LSCI setup.</p><p><strong>Results: </strong>MS-LSCI demonstrated improved depth profiling accuracy across varying laser wavelengths. The spectral wavelength mapping technique enhanced signal quality for wavelengths with limited penetration. The visibility parameter, <math> <mrow><msub><mi>V</mi> <mi>r</mi></msub> </mrow> </math> , provided consistent depth correlations across phantom models, with results validated through successful imaging of blood perfusion in a human hand.</p><p><strong>Conclusions: </strong>We highlight the potential of MS-LSCI for depth-resolved blood perfusion imaging using multi-wavelength approaches. The findings emphasize the technique's feasibility for non-invasive biomedical applications, including burn wound assessment and vascular imaging.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 2","pages":"023517"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.2.023517","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Laser speckle contrast imaging (LSCI) is a widely used tool in biomedical imaging that leverages the interactions between coherent laser light and tissue to assess blood perfusion. Although effective for 2D imaging applications such as skin burn assessment and wound healing, conventional LSCI lacks depth-resolved capabilities, limiting its potential for deeper perfusion analysis. Enhancing LSCI for depth profiling would significantly expand its utility in applications such as vascular imaging and burn diagnostics.

Aim: We investigate the use of multi-spectral laser speckle contrast imaging (MS-LSCI) for assessing blood perfusion at multiple depths, utilizing multiple laser wavelengths and advanced correlation techniques to improve depth localization.

Approach: Two tissue phantom molds were fabricated to simulate blood vessels at varying depths. Laser wavelengths from blue to near-infrared (NIR) were used to perform controlled experiments. The visibility parameter, V r , was employed to correlate and estimate the depth between the phantoms. In addition, a spectral wavelength mapping technique was implemented to enhance signal quality. Validation was conducted by imaging a human hand using the MS-LSCI setup.

Results: MS-LSCI demonstrated improved depth profiling accuracy across varying laser wavelengths. The spectral wavelength mapping technique enhanced signal quality for wavelengths with limited penetration. The visibility parameter, V r , provided consistent depth correlations across phantom models, with results validated through successful imaging of blood perfusion in a human hand.

Conclusions: We highlight the potential of MS-LSCI for depth-resolved blood perfusion imaging using multi-wavelength approaches. The findings emphasize the technique's feasibility for non-invasive biomedical applications, including burn wound assessment and vascular imaging.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信