An endothelial SOX18-mevalonate pathway axis enables repurposing of statins for infantile hemangioma.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Annegret Holm, Matthew S Graus, Jill Wylie-Sears, Jerry Wei Heng Tan, Maya Alvarez-Harmon, Luke Borgelt, Sana Nasim, Long Chung, Ashish Jain, Mingwei Sun, Liang Sun, Pascal Brouillard, Ramrada Lekwuttikarn, Yanfei Qi, Joyce Teng, Miikka Vikkula, Harry Kozakewich, John B Mulliken, Mathias Francois, Joyce Bischoff
{"title":"An endothelial SOX18-mevalonate pathway axis enables repurposing of statins for infantile hemangioma.","authors":"Annegret Holm, Matthew S Graus, Jill Wylie-Sears, Jerry Wei Heng Tan, Maya Alvarez-Harmon, Luke Borgelt, Sana Nasim, Long Chung, Ashish Jain, Mingwei Sun, Liang Sun, Pascal Brouillard, Ramrada Lekwuttikarn, Yanfei Qi, Joyce Teng, Miikka Vikkula, Harry Kozakewich, John B Mulliken, Mathias Francois, Joyce Bischoff","doi":"10.1172/JCI179782","DOIUrl":null,"url":null,"abstract":"<p><p>Infantile hemangioma (IH) is the most common tumor in children and a paradigm for pathological vasculogenesis, angiogenesis, and regression. Propranolol, the mainstay of treatment, inhibits IH vessel formation via a β-adrenergic receptor-independent off-target effect of its R(+) enantiomer on endothelial SOX18 - a member of the SOX (SRY-related HMG-box) family of transcription factors. Transcriptomic profiling of patient-derived hemangioma stem cells uncovered the mevalonate pathway (MVP) as a target of R(+) propranolol. Loss and gain of function of SOX18 confirmed it is both necessary and sufficient for R(+) propranolol suppression of the MVP, including regulation of sterol regulatory element-binding protein 2 (SREBP2) and the rate-limiting enzyme HMG-CoA reductase (HMGCR). A biological relevance of the endothelial SOX18-MVP axis in IH patient tissue was demonstrated by nuclear colocalization of SOX18 and SREBP2. Functional validation in a preclinical IH xenograft model revealed that statins - competitive inhibitors of HMGCR - efficiently suppress IH vessel formation. We propose an endothelial SOX18-MVP axis as a central regulator of IH pathogenesis and suggest statin repurposing to treat IH. The pleiotropic effects of R(+) propranolol and statins along the SOX18-MVP axis to disable an endothelial cell-specific program may have therapeutic implications for other vascular disease entities involving pathological vasculogenesis and angiogenesis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957709/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI179782","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Infantile hemangioma (IH) is the most common tumor in children and a paradigm for pathological vasculogenesis, angiogenesis, and regression. Propranolol, the mainstay of treatment, inhibits IH vessel formation via a β-adrenergic receptor-independent off-target effect of its R(+) enantiomer on endothelial SOX18 - a member of the SOX (SRY-related HMG-box) family of transcription factors. Transcriptomic profiling of patient-derived hemangioma stem cells uncovered the mevalonate pathway (MVP) as a target of R(+) propranolol. Loss and gain of function of SOX18 confirmed it is both necessary and sufficient for R(+) propranolol suppression of the MVP, including regulation of sterol regulatory element-binding protein 2 (SREBP2) and the rate-limiting enzyme HMG-CoA reductase (HMGCR). A biological relevance of the endothelial SOX18-MVP axis in IH patient tissue was demonstrated by nuclear colocalization of SOX18 and SREBP2. Functional validation in a preclinical IH xenograft model revealed that statins - competitive inhibitors of HMGCR - efficiently suppress IH vessel formation. We propose an endothelial SOX18-MVP axis as a central regulator of IH pathogenesis and suggest statin repurposing to treat IH. The pleiotropic effects of R(+) propranolol and statins along the SOX18-MVP axis to disable an endothelial cell-specific program may have therapeutic implications for other vascular disease entities involving pathological vasculogenesis and angiogenesis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信