Study on the mechanism of Shuanghe decoction against steroid-induced osteonecrosis of the femoral head: insights from network pharmacology, metabolomics, and gut microbiota.

IF 2.8 3区 医学 Q1 ORTHOPEDICS
Kai Zhu, Wanxin Liu, Yuanyuan Peng, Xiaoqiang Wang, Zhenhao Wang, Jun Zheng, Guoying Deng, Qiugen Wang
{"title":"Study on the mechanism of Shuanghe decoction against steroid-induced osteonecrosis of the femoral head: insights from network pharmacology, metabolomics, and gut microbiota.","authors":"Kai Zhu, Wanxin Liu, Yuanyuan Peng, Xiaoqiang Wang, Zhenhao Wang, Jun Zheng, Guoying Deng, Qiugen Wang","doi":"10.1186/s13018-025-05619-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Steroid-induced osteonecrosis of the femoral head (SONFH) is a challenging and debilitating orthopedic condition with a rising incidence in recent years. Shuanghe Decoction (SHD), a traditional Chinese medicine formula, has shown significant efficacy in treating SONFH, though its underlying mechanisms remain unclear.</p><p><strong>Purpose: </strong>This study aims to elucidate the therapeutic effects and potential mechanisms of SHD on SONFH through in vivo experiments, combined with network pharmacology, metabolomics, and gut microbiota analysis.</p><p><strong>Materials and methods: </strong>Forty male Sprague-Dawley rats (300 ± 20 g) were randomly assigned to four groups: Control, Model, SHD-L, and SHD-H, with 10 rats each. SONFH was induced in all groups except the Control group using lipopolysaccharide and methylprednisolone. The SHD-L and SHD-H groups were treated with Shuanghe decoction at doses of 4.86 g/kg/day and 9.72 g/kg/day, respectively, for eight weeks. Bone morphology, pathological changes, and osteogenic factors were evaluated using Micro-CT, histological staining, and immunohistochemistry. Network pharmacology, metabolomics, and gut microbiota analyses were conducted to explore SHD's mechanisms.</p><p><strong>Results: </strong>SHD improved bone morphology and increased osteogenic factor expression (RUNX2, OCN, COL-I). Network pharmacology indicated that metabolic pathways play a key role in SHD's therapeutic effects. Metabolomic analysis identified 14 differential metabolites, including 21-hydroxypregnenolone and tyramine, which were restored to normal levels by SHD. Gut microbiota analysis revealed that SHD modulated bacterial abundance, particularly Verrucomicrobia, Allobaculum, and Burkholderiales. A comprehensive network identified two key metabolites (tyramine, 21-hydroxypregnenolone), seven targets (CYP19A1, CYP1A2, CYP1B1, CYP2C9, CYP3A4, MIF, and HSD11B1), two metabolic pathways (tyrosine metabolism, steroid hormone biosynthesis), and four bacterial taxa (Jeotgalicoccus, Clostridium, Corynebacterium, rc4-4) as central to SHD against SONFH.</p><p><strong>Conclusion: </strong>SHD alleviates SONFH by reshaping gut microbiota, reversing metabolic imbalances, and enhancing osteogenesis. Our findings provide novel insights into the pharmacological mechanisms of SHD, laying a foundation for its clinical application in treating SONFH.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"20 1","pages":"202"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863617/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-025-05619-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Steroid-induced osteonecrosis of the femoral head (SONFH) is a challenging and debilitating orthopedic condition with a rising incidence in recent years. Shuanghe Decoction (SHD), a traditional Chinese medicine formula, has shown significant efficacy in treating SONFH, though its underlying mechanisms remain unclear.

Purpose: This study aims to elucidate the therapeutic effects and potential mechanisms of SHD on SONFH through in vivo experiments, combined with network pharmacology, metabolomics, and gut microbiota analysis.

Materials and methods: Forty male Sprague-Dawley rats (300 ± 20 g) were randomly assigned to four groups: Control, Model, SHD-L, and SHD-H, with 10 rats each. SONFH was induced in all groups except the Control group using lipopolysaccharide and methylprednisolone. The SHD-L and SHD-H groups were treated with Shuanghe decoction at doses of 4.86 g/kg/day and 9.72 g/kg/day, respectively, for eight weeks. Bone morphology, pathological changes, and osteogenic factors were evaluated using Micro-CT, histological staining, and immunohistochemistry. Network pharmacology, metabolomics, and gut microbiota analyses were conducted to explore SHD's mechanisms.

Results: SHD improved bone morphology and increased osteogenic factor expression (RUNX2, OCN, COL-I). Network pharmacology indicated that metabolic pathways play a key role in SHD's therapeutic effects. Metabolomic analysis identified 14 differential metabolites, including 21-hydroxypregnenolone and tyramine, which were restored to normal levels by SHD. Gut microbiota analysis revealed that SHD modulated bacterial abundance, particularly Verrucomicrobia, Allobaculum, and Burkholderiales. A comprehensive network identified two key metabolites (tyramine, 21-hydroxypregnenolone), seven targets (CYP19A1, CYP1A2, CYP1B1, CYP2C9, CYP3A4, MIF, and HSD11B1), two metabolic pathways (tyrosine metabolism, steroid hormone biosynthesis), and four bacterial taxa (Jeotgalicoccus, Clostridium, Corynebacterium, rc4-4) as central to SHD against SONFH.

Conclusion: SHD alleviates SONFH by reshaping gut microbiota, reversing metabolic imbalances, and enhancing osteogenesis. Our findings provide novel insights into the pharmacological mechanisms of SHD, laying a foundation for its clinical application in treating SONFH.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
7.70%
发文量
494
审稿时长
>12 weeks
期刊介绍: Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues. Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications. JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信