Shuai Wu, Jianping Wang, Wei Wei, Xiangchuan Ji, Bin Yang, Danyang Chen, Huimin Lu, Li Liu
{"title":"On the Study of Joint YOLOv5-DeepSort Detection and Tracking Algorithm for <i>Rhynchophorus ferrugineus</i>.","authors":"Shuai Wu, Jianping Wang, Wei Wei, Xiangchuan Ji, Bin Yang, Danyang Chen, Huimin Lu, Li Liu","doi":"10.3390/insects16020219","DOIUrl":null,"url":null,"abstract":"<p><p>The Red Palm Weevil (RPW, <i>Rhynchophorus ferrugineus</i>) is a destructive pest of palm plants that can cause the death of the entire plant when infested. To enhance the efficiency of RPW control, a novel detection and tracking algorithm based on the joint YOLOv5-DeepSort algorithm is proposed. Firstly, the original YOLOv5 is improved by adding a small object detection layer and an attention mechanism. At the same time, the detector of the original DeepSort is changed to the improved YOLOv5. Then, a historical frame data module is introduced into DeepSort to reduce the number of target identity (ID) switches while maintaining detection and tracking accuracy. Finally, an experiment is conducted to evaluate the joint YOLOv5-DeepSort detection and tracking algorithm. The experimental results show that, in terms of detectors, the improved YOLOv5 model achieves a mean average precision (mAP@.5) of 90.1% and a precision (P) of 93.8%. In terms of tracking performance, the joint YOLOv5-DeepSort algorithm achieves a Multiple Object Tracking Accuracy (MOTA) of 94.3%, a Multiple Object Tracking Precision (MOTP) of 90.14%, reduces ID switches by 33.3%, and realizes a count accuracy of 94.1%. These results demonstrate that the improved algorithm meets the practical requirements for RPW field detection and tracking.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16020219","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Red Palm Weevil (RPW, Rhynchophorus ferrugineus) is a destructive pest of palm plants that can cause the death of the entire plant when infested. To enhance the efficiency of RPW control, a novel detection and tracking algorithm based on the joint YOLOv5-DeepSort algorithm is proposed. Firstly, the original YOLOv5 is improved by adding a small object detection layer and an attention mechanism. At the same time, the detector of the original DeepSort is changed to the improved YOLOv5. Then, a historical frame data module is introduced into DeepSort to reduce the number of target identity (ID) switches while maintaining detection and tracking accuracy. Finally, an experiment is conducted to evaluate the joint YOLOv5-DeepSort detection and tracking algorithm. The experimental results show that, in terms of detectors, the improved YOLOv5 model achieves a mean average precision (mAP@.5) of 90.1% and a precision (P) of 93.8%. In terms of tracking performance, the joint YOLOv5-DeepSort algorithm achieves a Multiple Object Tracking Accuracy (MOTA) of 94.3%, a Multiple Object Tracking Precision (MOTP) of 90.14%, reduces ID switches by 33.3%, and realizes a count accuracy of 94.1%. These results demonstrate that the improved algorithm meets the practical requirements for RPW field detection and tracking.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.