{"title":"Dissolving microneedle patch for transdermal delivery of perindopril erbumine.","authors":"Zunaira Altaf, Zulcaif Ahmad, Asif Mahmood, Saniia Shchinar, Riffat Latif","doi":"10.1007/s10787-025-01696-z","DOIUrl":null,"url":null,"abstract":"<p><p>Perindopril Erbumine is a widely used angiotensin-converting enzyme (ACE) inhibitor for managing hypertension and cardiovascular diseases. Its dual action of lowering blood pressure and mitigating inflammation makes it a cornerstone treatment in these conditions. However, its oral administration often results in suboptimal bioavailability and gastrointestinal side effects. This study aimed to develop and characterize a dissolving microneedle (dMN) patch for the transdermal delivery of Perindopril Erbumine to enhance therapeutic efficacy and patient compliance. A Perindopril Erbumine-loaded microneedle patch was fabricated using chitosan and polyvinyl alcohol (PVA) using the solvent casting method. The microneedle patch was evaluated for physical properties, mechanical strength, drug loading, and moisture content. Ex-vivo permeation through rat skin and in-vivo pharmacokinetic studies in rabbits was conducted to compare its performance with a marketed oral Perindopril Erbumine formulation. The developed patch demonstrated effective skin penetration, controlled drug release, and a six-fold enhancement in cumulative drug permeation (82.45% ± 1.54) compared to the oral solution (14.32% ± 1.60). The pharmacokinetic study revealed prolonged drug release, with a 7.9-fold increase in half-life (7.739 ± 0.243 h vs. 0.986 ± 0.93 h) and a significantly higher area under the curve (AUC) for the microneedle patch. Skin irritation studies confirmed the biocompatibility of the formulation, with no significant adverse effects observed. These findings highlight the potential of Perindopril Erbumine-loaded dissolving microneedles as a promising transdermal delivery system for improved therapeutic outcomes in managing hypertension and inflammation-related vascular conditions, potentially reducing inflammation through enhanced and targeted drug delivery.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01696-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Perindopril Erbumine is a widely used angiotensin-converting enzyme (ACE) inhibitor for managing hypertension and cardiovascular diseases. Its dual action of lowering blood pressure and mitigating inflammation makes it a cornerstone treatment in these conditions. However, its oral administration often results in suboptimal bioavailability and gastrointestinal side effects. This study aimed to develop and characterize a dissolving microneedle (dMN) patch for the transdermal delivery of Perindopril Erbumine to enhance therapeutic efficacy and patient compliance. A Perindopril Erbumine-loaded microneedle patch was fabricated using chitosan and polyvinyl alcohol (PVA) using the solvent casting method. The microneedle patch was evaluated for physical properties, mechanical strength, drug loading, and moisture content. Ex-vivo permeation through rat skin and in-vivo pharmacokinetic studies in rabbits was conducted to compare its performance with a marketed oral Perindopril Erbumine formulation. The developed patch demonstrated effective skin penetration, controlled drug release, and a six-fold enhancement in cumulative drug permeation (82.45% ± 1.54) compared to the oral solution (14.32% ± 1.60). The pharmacokinetic study revealed prolonged drug release, with a 7.9-fold increase in half-life (7.739 ± 0.243 h vs. 0.986 ± 0.93 h) and a significantly higher area under the curve (AUC) for the microneedle patch. Skin irritation studies confirmed the biocompatibility of the formulation, with no significant adverse effects observed. These findings highlight the potential of Perindopril Erbumine-loaded dissolving microneedles as a promising transdermal delivery system for improved therapeutic outcomes in managing hypertension and inflammation-related vascular conditions, potentially reducing inflammation through enhanced and targeted drug delivery.
期刊介绍:
Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas:
-Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states
-Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs
-Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents
-Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain
-Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs
-Muscle-immune interactions during inflammation [...]