Efficacy of Chlorobenzene as a New Fumigant for Control of Confused Flour Beetle (Coleoptera: Tenebrionidae) and Rice Weevil (Coleoptera: Curculionidae).
{"title":"Efficacy of Chlorobenzene as a New Fumigant for Control of Confused Flour Beetle (Coleoptera: Tenebrionidae) and Rice Weevil (Coleoptera: Curculionidae).","authors":"Yong-Biao Liu","doi":"10.3390/insects16020183","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorobenzene is an industrial chemical with relatively high vapor pressure and has been used in the past to produce pesticide DDT (Dichlorodiphenyltrichloroethane). In this study, chlorobenzene was demonstrated to be an effective fumigant against two stored product insects: the confused flour beetle (<i>Tribolium confusum</i>) and rice weevil (<i>Sitophilus oryzae</i>). In small-scale fumigations in 1.9 L glass jars, the complete control of adults of both the confused flour beetle and rice weevil was achieved in 24 h at a dose of 150 μL/L at 21 °C. LC<sub>95</sub> values of chlorobenzene vapor concentration for adults of the confused flour beetle and rice weevil were estimated to be 1121 and 1114 ppm, respectively. In large-scale fumigations in a 60 L chamber, all life stages of the confused flour beetle and rice weevil in 20 kg of corn were fumigated for 24 h with 30 mL (500 μL/L) chlorobenzene at 21 °C. The complete control of adults and immature stages of the confused flour beetle was achieved. For the rice weevil, adults had 100% mortality, and immature life stages had 97.8% mortality. These results demonstrated that chlorobenzene is effective as a fumigant against stored product insects, and it is technically feasible to conduct large-scale fumigations for postharvest pest control on stored products.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16020183","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorobenzene is an industrial chemical with relatively high vapor pressure and has been used in the past to produce pesticide DDT (Dichlorodiphenyltrichloroethane). In this study, chlorobenzene was demonstrated to be an effective fumigant against two stored product insects: the confused flour beetle (Tribolium confusum) and rice weevil (Sitophilus oryzae). In small-scale fumigations in 1.9 L glass jars, the complete control of adults of both the confused flour beetle and rice weevil was achieved in 24 h at a dose of 150 μL/L at 21 °C. LC95 values of chlorobenzene vapor concentration for adults of the confused flour beetle and rice weevil were estimated to be 1121 and 1114 ppm, respectively. In large-scale fumigations in a 60 L chamber, all life stages of the confused flour beetle and rice weevil in 20 kg of corn were fumigated for 24 h with 30 mL (500 μL/L) chlorobenzene at 21 °C. The complete control of adults and immature stages of the confused flour beetle was achieved. For the rice weevil, adults had 100% mortality, and immature life stages had 97.8% mortality. These results demonstrated that chlorobenzene is effective as a fumigant against stored product insects, and it is technically feasible to conduct large-scale fumigations for postharvest pest control on stored products.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.