Effects of Double-Stranded RNA Degrading Nucleases on RNAi Efficiency in Beet Moth Spodoptera exigua (Lepidoptera: Noctuidae).

IF 2.7 2区 农林科学 Q1 ENTOMOLOGY
Insects Pub Date : 2025-02-19 DOI:10.3390/insects16020229
Guandi Wang, Qian Wang, Wenrui Liu, Jingxin Wen, Yubo Yang, Zhilong Niu, Wei Guo, Dan Zhao
{"title":"Effects of Double-Stranded RNA Degrading Nucleases on RNAi Efficiency in Beet Moth <i>Spodoptera exigua</i> (Lepidoptera: Noctuidae).","authors":"Guandi Wang, Qian Wang, Wenrui Liu, Jingxin Wen, Yubo Yang, Zhilong Niu, Wei Guo, Dan Zhao","doi":"10.3390/insects16020229","DOIUrl":null,"url":null,"abstract":"<p><p>The insect order Lepidoptera contains many species that are considered to be agricultural pests. Specific double-stranded RNA-degrading enzymes in some moth species decrease the efficiency of RNA interference (RNAi). RNAi refers to the efficient and specific degradation of homologous mRNA induced by highly conserved, double-stranded RNA during evolution. The dsRNase enzymes can specifically recognize exogenous dsRNA, and bind to and degrade dsRNA, resulting in the inability of dsRNA to play its role. Although dsRNases play an important role in dsRNA degradation, there has been limited research on these enzymes. In this study, we successfully identified four genes related to dsRNases (named <i>SeRNase1</i>, <i>SeRNase2</i>, <i>SeRNase3</i> and <i>SeRNase4</i>) from the genome of <i>Spodoptera exigua</i>. To overcome the rapid degradation of dsRNA in the midgut of <i>S. exigua</i>, we combined nanotechnology with biology and developed a new strategy to administer RNAi to insect pests. This binding block directed contact between the dsRNA and SeRNases to improve the efficiency of RNAi in suppressing gene expression. We demonstrate the potential of using nanotechnology to provide a novel RNAi delivery method for pest control.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857036/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16020229","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The insect order Lepidoptera contains many species that are considered to be agricultural pests. Specific double-stranded RNA-degrading enzymes in some moth species decrease the efficiency of RNA interference (RNAi). RNAi refers to the efficient and specific degradation of homologous mRNA induced by highly conserved, double-stranded RNA during evolution. The dsRNase enzymes can specifically recognize exogenous dsRNA, and bind to and degrade dsRNA, resulting in the inability of dsRNA to play its role. Although dsRNases play an important role in dsRNA degradation, there has been limited research on these enzymes. In this study, we successfully identified four genes related to dsRNases (named SeRNase1, SeRNase2, SeRNase3 and SeRNase4) from the genome of Spodoptera exigua. To overcome the rapid degradation of dsRNA in the midgut of S. exigua, we combined nanotechnology with biology and developed a new strategy to administer RNAi to insect pests. This binding block directed contact between the dsRNA and SeRNases to improve the efficiency of RNAi in suppressing gene expression. We demonstrate the potential of using nanotechnology to provide a novel RNAi delivery method for pest control.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Insects
Insects Agricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍: Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信