The emerging role of glycine receptor α2 subunit defects in neurodevelopmental disorders.

IF 3.5 3区 医学 Q2 NEUROSCIENCES
Frontiers in Molecular Neuroscience Pub Date : 2025-02-11 eCollection Date: 2025-01-01 DOI:10.3389/fnmol.2025.1550863
Sean D Fraser, Robert J Harvey
{"title":"The emerging role of glycine receptor α2 subunit defects in neurodevelopmental disorders.","authors":"Sean D Fraser, Robert J Harvey","doi":"10.3389/fnmol.2025.1550863","DOIUrl":null,"url":null,"abstract":"<p><p>Rare neurodevelopmental disorders (NDDs) are one of the most significant unmet challenges in healthcare due to their lifelong nature, high management costs, and recurrence within families. This review will focus on newly-emerging genetic forms of NDDs resulting from variants in the glycine receptor (GlyR) α2 subunit gene. Studies using <i>Glra2</i> knockout mice have convincingly demonstrated that GlyR α2 is essential for cortical interneuron migration and progenitor homeostasis. Genetic inactivation of GlyR α2 impairs the capacity of apical progenitors to generate basal progenitors, resulting in an overall reduction of projection neurons in the cerebral cortex. As a result, microcephaly is observed in newborn <i>Glra2</i> knockout mice, as well as defects in neuronal morphology, increased susceptibility to seizures, and defects in novel object recognition, motor memory consolidation, righting reflexes, novelty-induced locomotion in the open field test, and motivational reward tasks. Consistent with these findings, we and others have identified missense variants and microdeletions in the human GlyR α2 subunit gene (<i>GLRA2</i>) in individuals with autism spectrum disorder (ASD), developmental delay (DD) and/or intellectual disability (ID), often accompanied by microcephaly, language delay and epilepsy. In this review, we highlight the critical role of the GlyR α2 subunit revealed by knockout mice and our current understanding of GlyR α2 pathomechanisms in human NDDs. Finally, we will consider the current gaps in our knowledge, which include: (i) Limited functional validation for GlyR α2 missense variants associated with human NDDs; (ii) The lack of <i>gain-of-function</i> GlyR α2 mouse models; (iii) Our limited knowledge of GlyR α2 interacting proteins. We also highlight potential future developments in the field, including routes to personalized medicines for individuals with GlyR α2 mutations.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"18 ","pages":"1550863"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850347/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2025.1550863","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rare neurodevelopmental disorders (NDDs) are one of the most significant unmet challenges in healthcare due to their lifelong nature, high management costs, and recurrence within families. This review will focus on newly-emerging genetic forms of NDDs resulting from variants in the glycine receptor (GlyR) α2 subunit gene. Studies using Glra2 knockout mice have convincingly demonstrated that GlyR α2 is essential for cortical interneuron migration and progenitor homeostasis. Genetic inactivation of GlyR α2 impairs the capacity of apical progenitors to generate basal progenitors, resulting in an overall reduction of projection neurons in the cerebral cortex. As a result, microcephaly is observed in newborn Glra2 knockout mice, as well as defects in neuronal morphology, increased susceptibility to seizures, and defects in novel object recognition, motor memory consolidation, righting reflexes, novelty-induced locomotion in the open field test, and motivational reward tasks. Consistent with these findings, we and others have identified missense variants and microdeletions in the human GlyR α2 subunit gene (GLRA2) in individuals with autism spectrum disorder (ASD), developmental delay (DD) and/or intellectual disability (ID), often accompanied by microcephaly, language delay and epilepsy. In this review, we highlight the critical role of the GlyR α2 subunit revealed by knockout mice and our current understanding of GlyR α2 pathomechanisms in human NDDs. Finally, we will consider the current gaps in our knowledge, which include: (i) Limited functional validation for GlyR α2 missense variants associated with human NDDs; (ii) The lack of gain-of-function GlyR α2 mouse models; (iii) Our limited knowledge of GlyR α2 interacting proteins. We also highlight potential future developments in the field, including routes to personalized medicines for individuals with GlyR α2 mutations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
2.10%
发文量
669
审稿时长
14 weeks
期刊介绍: Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信