{"title":"The emerging role of glycine receptor α2 subunit defects in neurodevelopmental disorders.","authors":"Sean D Fraser, Robert J Harvey","doi":"10.3389/fnmol.2025.1550863","DOIUrl":null,"url":null,"abstract":"<p><p>Rare neurodevelopmental disorders (NDDs) are one of the most significant unmet challenges in healthcare due to their lifelong nature, high management costs, and recurrence within families. This review will focus on newly-emerging genetic forms of NDDs resulting from variants in the glycine receptor (GlyR) α2 subunit gene. Studies using <i>Glra2</i> knockout mice have convincingly demonstrated that GlyR α2 is essential for cortical interneuron migration and progenitor homeostasis. Genetic inactivation of GlyR α2 impairs the capacity of apical progenitors to generate basal progenitors, resulting in an overall reduction of projection neurons in the cerebral cortex. As a result, microcephaly is observed in newborn <i>Glra2</i> knockout mice, as well as defects in neuronal morphology, increased susceptibility to seizures, and defects in novel object recognition, motor memory consolidation, righting reflexes, novelty-induced locomotion in the open field test, and motivational reward tasks. Consistent with these findings, we and others have identified missense variants and microdeletions in the human GlyR α2 subunit gene (<i>GLRA2</i>) in individuals with autism spectrum disorder (ASD), developmental delay (DD) and/or intellectual disability (ID), often accompanied by microcephaly, language delay and epilepsy. In this review, we highlight the critical role of the GlyR α2 subunit revealed by knockout mice and our current understanding of GlyR α2 pathomechanisms in human NDDs. Finally, we will consider the current gaps in our knowledge, which include: (i) Limited functional validation for GlyR α2 missense variants associated with human NDDs; (ii) The lack of <i>gain-of-function</i> GlyR α2 mouse models; (iii) Our limited knowledge of GlyR α2 interacting proteins. We also highlight potential future developments in the field, including routes to personalized medicines for individuals with GlyR α2 mutations.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"18 ","pages":"1550863"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850347/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2025.1550863","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rare neurodevelopmental disorders (NDDs) are one of the most significant unmet challenges in healthcare due to their lifelong nature, high management costs, and recurrence within families. This review will focus on newly-emerging genetic forms of NDDs resulting from variants in the glycine receptor (GlyR) α2 subunit gene. Studies using Glra2 knockout mice have convincingly demonstrated that GlyR α2 is essential for cortical interneuron migration and progenitor homeostasis. Genetic inactivation of GlyR α2 impairs the capacity of apical progenitors to generate basal progenitors, resulting in an overall reduction of projection neurons in the cerebral cortex. As a result, microcephaly is observed in newborn Glra2 knockout mice, as well as defects in neuronal morphology, increased susceptibility to seizures, and defects in novel object recognition, motor memory consolidation, righting reflexes, novelty-induced locomotion in the open field test, and motivational reward tasks. Consistent with these findings, we and others have identified missense variants and microdeletions in the human GlyR α2 subunit gene (GLRA2) in individuals with autism spectrum disorder (ASD), developmental delay (DD) and/or intellectual disability (ID), often accompanied by microcephaly, language delay and epilepsy. In this review, we highlight the critical role of the GlyR α2 subunit revealed by knockout mice and our current understanding of GlyR α2 pathomechanisms in human NDDs. Finally, we will consider the current gaps in our knowledge, which include: (i) Limited functional validation for GlyR α2 missense variants associated with human NDDs; (ii) The lack of gain-of-function GlyR α2 mouse models; (iii) Our limited knowledge of GlyR α2 interacting proteins. We also highlight potential future developments in the field, including routes to personalized medicines for individuals with GlyR α2 mutations.
期刊介绍:
Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.