{"title":"Protocells Either Synchronize or Starve.","authors":"Marco Villani, Roberto Serra","doi":"10.3390/e27020154","DOIUrl":null,"url":null,"abstract":"<p><p>Two different processes take place in self-reproducing protocells, i.e., (i) cell reproduction by fission and (ii) duplication of the genetic material. One major problem is indeed that of assuring that the two processes take place at the same pace, i.e., that they synchronize, which is a necessary condition for sustainable growth. In previous theoretical works, using dynamical models, we had shown that such synchronization can spontaneously emerge, generation after generation, under a broad set of hypotheses about the architecture of the protocell, the nature of the self-replicating molecules, and the types of kinetic equations. However, an important class of cases (quadratic or higher-order self-replication) did not synchronize in the models we had used, but could actually lead to divergence of the concentration of replicators. We show here that this behavior is due to a simplification of the previous models, i.e., the \"buffering\" hypothesis, which assumes instantaneous equilibrium of the internal and external concentrations of those compounds which can cross the cell membrane. That divergence disappears if we make use of more realistic dynamical models, with finite transmembrane diffusion rates of the precursors of replicators.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854096/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27020154","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two different processes take place in self-reproducing protocells, i.e., (i) cell reproduction by fission and (ii) duplication of the genetic material. One major problem is indeed that of assuring that the two processes take place at the same pace, i.e., that they synchronize, which is a necessary condition for sustainable growth. In previous theoretical works, using dynamical models, we had shown that such synchronization can spontaneously emerge, generation after generation, under a broad set of hypotheses about the architecture of the protocell, the nature of the self-replicating molecules, and the types of kinetic equations. However, an important class of cases (quadratic or higher-order self-replication) did not synchronize in the models we had used, but could actually lead to divergence of the concentration of replicators. We show here that this behavior is due to a simplification of the previous models, i.e., the "buffering" hypothesis, which assumes instantaneous equilibrium of the internal and external concentrations of those compounds which can cross the cell membrane. That divergence disappears if we make use of more realistic dynamical models, with finite transmembrane diffusion rates of the precursors of replicators.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.