Performance Improvement for Discretely Modulated Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with Imbalanced Modulation.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-02-03 DOI:10.3390/e27020160
Zehui Liu, Jiandong Bai, Fengchao Li, Yijun Li, Yan Tian, Wenyuan Liu
{"title":"Performance Improvement for Discretely Modulated Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with Imbalanced Modulation.","authors":"Zehui Liu, Jiandong Bai, Fengchao Li, Yijun Li, Yan Tian, Wenyuan Liu","doi":"10.3390/e27020160","DOIUrl":null,"url":null,"abstract":"<p><p>The modulation mode at the transmitters plays a crucial role in the continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) protocol. However, in practical applications, differences in the modulation schemes between two transmitters can inevitably impact protocol performance, particularly when using discrete modulation with four-state or eight-state formats. This work primarily investigates the effect of imbalanced modulation at the transmitters on the security of the CV-MDI-QKD protocol under both symmetric and asymmetric distance scenarios. By employing imbalanced discrete modulation maps and numerical convex optimization techniques, the proposed CV-MDI-QKD protocol achieves a notably higher secret key rate and outperforms existing protocols in terms of maximum transmission distance. Specifically, simulation results demonstrate that the secret key rate and maximum transmission distance are boosted by approximately 77.77% and 24.3%, respectively, compared to the original protocol. This novel and simplified modulation method can be seamlessly implemented in existing experimental setups without requiring equipment modifications. Furthermore, it provides a practical approach to enhancing protocol performance and enabling cost-effective applications in secure quantum communication networks under real-world environments.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853792/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27020160","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The modulation mode at the transmitters plays a crucial role in the continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) protocol. However, in practical applications, differences in the modulation schemes between two transmitters can inevitably impact protocol performance, particularly when using discrete modulation with four-state or eight-state formats. This work primarily investigates the effect of imbalanced modulation at the transmitters on the security of the CV-MDI-QKD protocol under both symmetric and asymmetric distance scenarios. By employing imbalanced discrete modulation maps and numerical convex optimization techniques, the proposed CV-MDI-QKD protocol achieves a notably higher secret key rate and outperforms existing protocols in terms of maximum transmission distance. Specifically, simulation results demonstrate that the secret key rate and maximum transmission distance are boosted by approximately 77.77% and 24.3%, respectively, compared to the original protocol. This novel and simplified modulation method can be seamlessly implemented in existing experimental setups without requiring equipment modifications. Furthermore, it provides a practical approach to enhancing protocol performance and enabling cost-effective applications in secure quantum communication networks under real-world environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信