{"title":"Perceptual Complexity as Normalized Shannon Entropy.","authors":"Norberto M Grzywacz","doi":"10.3390/e27020166","DOIUrl":null,"url":null,"abstract":"<p><p>Complexity is one of the most important variables in how the brain performs decision making based on esthetic values. Multiple definitions of perceptual complexity have been proposed, with one of the most fruitful being the Normalized Shannon Entropy one. However, the Normalized Shannon Entropy definition has theoretical gaps that we address in this article. Focusing on visual perception, we first address whether normalization fully corrects for the effects of measurement resolution on entropy. The answer is negative, but the remaining effects are minor, and we propose alternate definitions of complexity, correcting this problem. Related to resolution, we discuss the ideal spatial range in the computation of spatial complexity. The results show that this range must be small but not too small. Furthermore, it is suggested by the analysis of this range that perceptual spatial complexity is based solely on translational isometry. Finally, we study how the complexities of distinct visual variables interact. We argue that the complexities of the variables of interest to the brain's visual system may not interact linearly because of interclass correlation. But the interaction would be linear if the brain weighed complexities as in Kempthorne's λ-Bayes-based compromise problem. We finish by listing several experimental tests of these theoretical ideas on complexity.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854106/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27020166","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Complexity is one of the most important variables in how the brain performs decision making based on esthetic values. Multiple definitions of perceptual complexity have been proposed, with one of the most fruitful being the Normalized Shannon Entropy one. However, the Normalized Shannon Entropy definition has theoretical gaps that we address in this article. Focusing on visual perception, we first address whether normalization fully corrects for the effects of measurement resolution on entropy. The answer is negative, but the remaining effects are minor, and we propose alternate definitions of complexity, correcting this problem. Related to resolution, we discuss the ideal spatial range in the computation of spatial complexity. The results show that this range must be small but not too small. Furthermore, it is suggested by the analysis of this range that perceptual spatial complexity is based solely on translational isometry. Finally, we study how the complexities of distinct visual variables interact. We argue that the complexities of the variables of interest to the brain's visual system may not interact linearly because of interclass correlation. But the interaction would be linear if the brain weighed complexities as in Kempthorne's λ-Bayes-based compromise problem. We finish by listing several experimental tests of these theoretical ideas on complexity.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.