Multi-Space Feature Fusion and Entropy-Based Metrics for Underwater Image Quality Assessment.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-02-06 DOI:10.3390/e27020173
Baozhen Du, Hongwei Ying, Jiahao Zhang, Qunxin Chen
{"title":"Multi-Space Feature Fusion and Entropy-Based Metrics for Underwater Image Quality Assessment.","authors":"Baozhen Du, Hongwei Ying, Jiahao Zhang, Qunxin Chen","doi":"10.3390/e27020173","DOIUrl":null,"url":null,"abstract":"<p><p>In marine remote sensing, underwater images play an indispensable role in ocean exploration, owing to their richness in information and intuitiveness. However, underwater images often encounter issues such as color shifts, loss of detail, and reduced clarity, leading to the decline of image quality. Therefore, it is critical to study precise and efficient methods for assessing underwater image quality. A no-reference multi-space feature fusion and entropy-based metrics for underwater image quality assessment (MFEM-UIQA) are proposed in this paper. Considering the color shifts of underwater images, the chrominance difference map is created from the chrominance space and statistical features are extracted. Moreover, considering the information representation capability of entropy, entropy-based multi-channel mutual information features are extracted to further characterize chrominance features. For the luminance space features, contrast features from luminance images based on gamma correction and luminance uniformity features are extracted. In addition, logarithmic Gabor filtering is applied to the luminance space images for subband decomposition and entropy-based mutual information of subbands is captured. Furthermore, underwater image noise features, multi-channel dispersion information, and visibility features are extracted to jointly represent the perceptual features. The experiments demonstrate that the proposed MFEM-UIQA surpasses the state-of-the-art methods.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27020173","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In marine remote sensing, underwater images play an indispensable role in ocean exploration, owing to their richness in information and intuitiveness. However, underwater images often encounter issues such as color shifts, loss of detail, and reduced clarity, leading to the decline of image quality. Therefore, it is critical to study precise and efficient methods for assessing underwater image quality. A no-reference multi-space feature fusion and entropy-based metrics for underwater image quality assessment (MFEM-UIQA) are proposed in this paper. Considering the color shifts of underwater images, the chrominance difference map is created from the chrominance space and statistical features are extracted. Moreover, considering the information representation capability of entropy, entropy-based multi-channel mutual information features are extracted to further characterize chrominance features. For the luminance space features, contrast features from luminance images based on gamma correction and luminance uniformity features are extracted. In addition, logarithmic Gabor filtering is applied to the luminance space images for subband decomposition and entropy-based mutual information of subbands is captured. Furthermore, underwater image noise features, multi-channel dispersion information, and visibility features are extracted to jointly represent the perceptual features. The experiments demonstrate that the proposed MFEM-UIQA surpasses the state-of-the-art methods.

基于多空间特征融合和熵的水下图像质量评价方法。
在海洋遥感中,水下图像以其信息的丰富性和直观性在海洋探测中发挥着不可或缺的作用。然而,水下图像经常会遇到色彩偏移、细节丢失、清晰度降低等问题,导致图像质量下降。因此,研究精确、高效的水下图像质量评估方法至关重要。提出了一种无参考多空间特征融合和基于熵的水下图像质量评价方法。考虑到水下图像的色差,从色差空间生成色差图并提取统计特征。此外,考虑到熵的信息表示能力,提取基于熵的多通道互信息特征,进一步表征色度特征。对于亮度空间特征,提取基于伽玛校正的亮度图像对比度特征和亮度均匀性特征。此外,对亮度空间图像进行对数Gabor滤波进行子带分解,获取基于熵的子带互信息。进一步,提取水下图像噪声特征、多通道色散信息和可见性特征,共同表示感知特征。实验表明,所提出的MFEM-UIQA方法优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信